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Analysis and Synthesis of Combinational Circuits

Analysis Problem: Given a combinational circuit made up of 

logic gates, determine the output F as a function of the input 

variables, X,Y,Z…

X

Y

Z

combinational

logic circuit
F = f(X,Y,Z)

Synthesis/Design Problem: Given a combinational circuit 

defined by its I/O mapping, F = f(X,Y,Z,..), typically stated as 

a truth table, synthesize the circuit with logic gates, 

preferably using the minimum number of gates, as well as 

trying to minimize propagation delays.



Unit-3 Contents:       (current reading:, Wakerly Chapter 3)

1. Boolean algebra, axioms, theorems, properties

2. Standard logic gates, AND, OR, NOT, NAND, NOR, XOR, XNOR

3. Operator precedence (∙ has higher precedence than +)

4. Duality

5. One-, two-, and three-variable theorems and their duals

6. De Morgan’s theorems, De Morgan duality

7. De Morgan’s theorems for NAND/NOR and AND/OR gates

8. NAND and NOR universal gates

9. NAND-NAND and NOR-NOR implementations

10. Bubble-to-bubble transformations, bubble-pushing operations

11. Proofs using truth tables, or using the basic theorems

12. Algebraic simplification of logic expressions



Contents, continued:

13. Combinational circuit synthesis from truth table – example

14. Simulink implementations, exporting Verilog code

15. Standard representations of combinational circuits

16. Canonical minterm/SOP and maxterm/POS representations

17. Combinational circuit analysis – examples

18. Combinational circuit synthesis – examples

19. Combinational circuit minimization – Karnaugh maps

20. Timing hazards



Boolean algebra, or switching algebra, is a branch of 

mathematical logic in which variables take only two values:

TRUE, FALSE, or, alternatively, 1, 0,  or, HIGH, LOW

It was invented by George Boole and its relevance to electrical 

engineering originated with Claude Shannon. See the Wikipedia 

resources below.

The algebraic system is defined by certain axioms involving

the AND, OR, and NOT operations and the constants 0,1.

George Boole

Claude Shannon

1. Boolean Algebra, Axioms, Theorems, Properties

but see also, Fuzzy Logic, in which TRUE is relative in the range (0,1]

https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Fuzzy_logic


The AND, OR, and NOT operations between any two Boolean variables 

X,Y are denoted by the dot ∙ and plus + operations, and by prime ʹ for 

the complement or inverse,

AND(X,Y) = X ∙ Y   = logical AND

OR(X,Y) = X + Y  = logical OR

NOT(X) = Xʹ        = logical NOT, or complement, or inverse

Alternative notations are those used in computer languages, such as 

MATLAB and Verilog, using the symbols,  &   |   ~

AND(X,Y) = X & Y  = logical AND

OR(X,Y) = X | Y    = logical OR

NOT(X) = ~X       = logical NOT, or complement, or inverse

NOT is also denoted by an overbar, NOT(X) = X



Also, the dot, ∙ , is often omitted in AND operations, provided it would 

not cause an ambiguity in the name of the variable,

for example, if A,B,C are three distinct variables, then we can write,

A ∙ B ∙ C = ABC

On the other hand, if AB and C are two distinct variables, then, it 

would be better to use the dot to avoid ambiguity, that is, write,

AB ∙ C

or, use parentheses, (AB)C, instead of the more ambiguous ABC



2. Standard logic gates

X

Y
X ∙ Y

X   Y     X ∙ Y

0    0         0

0    1         0

1    0         0

1    1         1

X   Y      X+Y

0    0         0

0    1         1

1    0         1

1    1         1

X     Xʹ

0      1

1      0 

X+Y
X

Y

X Xʹ

AND

OR

NOT

AND, OR, and NOT operations



X

Y
(X ∙ Y)ʹ

X   Y     X ∙ Y     (X ∙ Y)ʹ

0    0         0            1

0    1         0            1

1    0         0            1

1    1         1            0

X   Y      X+Y     (X+Y)ʹ

0    0         0            1

0    1         1             0

1    0         1             0

1    1         1            0

(X+Y)ʹ
X

Y

NAND

NOR

AND   NAND

OR NOR

2. Standard logic gates NAND and NOR operations



X

Y

XYʹ + XʹY = 

(X+Y)(Xʹ +Yʹ)

X   Y      XYʹ + XʹY

0    0               0

0    1               1

1    0               1

1    1               0

XY + XʹYʹ = 

(X+Yʹ)(Xʹ +Y)

X

Y

XOR

XNOR

XOR

XNOR

X   Y      XY + XʹYʹ

0    0              1

0    1              0

1    0              0

1    1              1

because, XXʹ = YʹY = 0

2. Standard logic gates XOR and XNOR operations

(XYʹ + XʹY)ʹ = XY + XʹYʹ  from De Morgan 

exclusive OR

useful for testing equality



Note: As in programming languages, “multiplication”, or AND 

operation, ∙ , has higher precedence than “addition”, or OR

operation, +

e.g.,  A ∙ B + C ∙ D = (A ∙ B) + (C ∙ D)

but, use of parentheses is always recommended.

More generally, the NOT operation has higher precedence than 

AND and OR. 

MATLAB has similar order of precedence, from higher to lower: 

~, &, | 

3. Operator precedence



Every relationship, axiom, equation, or theorem among Boolean 

variables X,Y,…, and constants 0 and 1, has a dual obtained by 

interchanging the roles of the AND and the OR operations (i.e., 

interchanging, ∙ and + ), while also interchanging 0 and 1. 

The dual and original relationships are not necessarily equivalent to 

each other, but they are both separately valid.

For example, the basic axioms relating 0 and 1 (TRUE and FALSE) 

come in dual pairs:

AND                   OR

0 ∙ 0 = 0             1 + 1 = 1

1 ∙ 1 = 1             0 + 0 = 0 

0 ∙ 1 = 0             1 + 0 = 1

1 ∙ 0 = 0             0 + 1 = 1

4. Duality



one-variable theorems and their duals:

X + 0 = X             X ∙ 1 = X            (identities)

X + 1 = 1              X ∙ 0 = 0             (null elements)

X + X = X            X ∙ X = X           (idempotency)

X + Xʹ = 1            X ∙ Xʹ = 0           (complements)

(Xʹ)ʹ = X                           (involution)

5. Boolean algebra theorems and their duals



X ∙ Y = Y  ∙ X                                                        (commutative)

(X  ∙ Y) ∙ Z = X ∙ (Y ∙ Z)                                       (associative)

(X + A) ∙ (X + B) = X + (A ∙ B)                            (distributive)

X ∙ (X  + A) = X                                                    (covering)

(X + A) ∙ (X + Aʹ) = X                                          (combining)

(X+A) ∙ (Xʹ +B) = (X+A) ∙ (Xʹ +B) ∙ (A+B)         (consensus theorem)

two-variable and three-variable theorems and their duals

X + Y = Y + X                                                       (commutative)

(X + Y) + Z = X + (Y + Z)                                    (associative)

X ∙ A + X ∙ B = X ∙ (A + B)                                   (distributive)

X + X ∙ A = X                                                        (covering)

X ∙ A + X ∙ Aʹ = X                                                 (combining)

X ∙ A + Xʹ ∙ B = X ∙ A + Xʹ ∙ B + A ∙ B                  (consensus theorem) 

duals

consensus term

consensus term

see Wakerly/Table 3-3 for n-variable theorems and their duals



Boole/Shannon expansion theorem:

F(X,Y,Z) = X ∙ F(1,Y,Z) + Xʹ ∙ F(0,Y,Z)

F(X,Y,Z) = [X + F(0,Y,Z) ] ∙ [Xʹ + F(1,Y,Z) ]

dual

Wikipedia - Boole/Shannon expansion theorem

Example:

F(X,Y,Z) = X ∙ Y + Y ∙ Z + Z ∙ X

F(1,Y,Z)  = Y + Y ∙ Z + Z = Y + Z

F(0,Y,Z)  = Y ∙ Z

F(X,Y,Z) = X ∙ F(1,Y,Z) + Xʹ ∙ F(0,Y,Z) = X ∙ (Y+Z) + Xʹ ∙ (Y ∙ Z)

F(X,Y,Z) = [X + F(0,Y,Z)] ∙ [Xʹ + F(1,Y,Z)] =

= [X + (Y ∙ Z)] ∙ [Xʹ + Y + Z]



additional clarification & direct derivation:

F(X,Y,Z) = X Y + YZ + ZX

= XY + (X + Xʹ )YZ + ZX

= X(Y + YZ + Z) + Xʹ YZ

F(1,Y,Z)  = Y + YZ + Z = Y + Z

F(0,Y,Z)  = YZ

Y + YZ + Z = Y + YZ + YZ + Z = 

= Y(1 + Z) + (Y + 1)Z = 

= Y + Z

note:  X + Xʹ = 1



(X ∙ Y)ʹ  =  Xʹ + Yʹ         (NAND)

(X + Y)ʹ  =  Xʹ ∙ Yʹ         (NOR)

X ∙ Y =  (Xʹ + Yʹ)ʹ          (AND)

X + Y =  (Xʹ ∙ Yʹ)ʹ          (OR)

Generalized De Morgan theorems – De Morgan duality: 

The complement of an expression is the dual of the expression with all 

variables replaced by their complements, or, equivalently, the 

expression is equal to the complement of its dual with all variables 

complemented,

F(X,Y, Z, …) ʹ  =  Fdual (Xʹ,Yʹ, Zʹ , …)

F(X,Y, Z, …)  = Fdual (Xʹ,Yʹ, Zʹ , …) ʹ

6. De Morgan’s theorems, De Morgan duality De Morgan's laws - Wikipedia

https://en.wikipedia.org/wiki/De_Morgan%27s_laws


De Morgan examples

[X + (Y ∙ Z)]ʹ  = Xʹ ∙ (Yʹ + Zʹ)

[X  ∙ (Y + Z)]ʹ = Xʹ + (Yʹ ∙ Zʹ)

(X + Y + Z)ʹ = Xʹ ∙ Yʹ ∙ Zʹ

(X ∙ Y ∙ Z)ʹ = Xʹ + Yʹ + Zʹ

De Morgan duality:

F(X,Y,Z) = X + (Y ∙ Z),         Fdual (X,Y, Z ) = X ∙ (Y + Z)

F(X,Y,Z) ʹ = [X + (Y ∙ Z)]ʹ  = Xʹ ∙ (Yʹ + Zʹ) = Fdual (Xʹ,Yʹ, Zʹ )

F(X,Y,Z) = X  ∙ (Y + Z),       Fdual (X,Y, Z ) = X + (Y ∙ Z)

F(X,Y,Z) ʹ = [X  ∙ (Y + Z)]ʹ = Xʹ + (Yʹ ∙ Zʹ) = Fdual (Xʹ,Yʹ, Zʹ )



Using De Morgan’s theorems, show that, XORʹ = XNOR, defined by,

XOR(X,Y) = X ∙ Yʹ + Xʹ ∙ Y = (X + Y) ∙ (Xʹ + Yʹ)                                                                

XNOR(X,Y) = X ∙ Y + Xʹ ∙ Yʹ = (X + Yʹ) ∙ (Xʹ + Y)                               

XORʹ = (X ∙ Yʹ + Xʹ ∙ Y)ʹ

= (X ∙ Yʹ) ʹ  ∙  (Xʹ ∙ Y)ʹ

= (Xʹ + Y) ∙ (X + Yʹ)

= X ∙ Y + Xʹ  ∙ Yʹ 

= XNOR

or more simply, using De Morgan duality: 

XORdual (X,Y) = (X+ Yʹ) ∙ (Xʹ + Y) 

XOR(X,Y) ʹ = XORdual (Xʹ,Yʹ)  = (Xʹ + Y) ∙ (X + Yʹ) = XNOR(X,Y)

note, XOR, XNOR

are invariant under

the substitutions:

X      Xʹ 

Y      Yʹ 



7. De Morgan’s theorems for NAND and NOR gates                          

X

Y
(X ∙ Y)ʹ

(X+Y)ʹ
X

Y

(X ∙ Y)ʹ = Xʹ + Yʹ

NAND(X,Y) = OR(Xʹ,Yʹ)

Xʹ + Yʹ
X

Y

X

Y
Xʹ ∙ Yʹ

(X+Y)ʹ = Xʹ ∙ Yʹ

NOR(X,Y) = AND(Xʹ,Yʹ)





NAND

NOR

NAND equivalent using OR

NOR equivalent using AND



X

Y
X ∙ Y

X+Y
X

Y

X ∙ Y = (Xʹ + Yʹ)ʹ

AND(X,Y) = NOR(Xʹ,Yʹ)

(Xʹ + Yʹ)ʹ
X

Y

X

Y
(Xʹ ∙ Yʹ)ʹ

X+Y = (Xʹ ∙ Yʹ)ʹ

OR(X,Y) = NAND(Xʹ,Yʹ)





AND

OR

AND equivalent using NOR

OR equivalent using NAND

7. De Morgan’s theorems for AND and OR gates                          



De Morgan’s laws for sets De Morgan's laws - Wikipedia

The Boolean algebra equivalents of the AND, OR, and NOT operations in 

the theory of sets are the Union and  Intersection of two sets, and the 

Complement of a set. 

They can be visualized with Venn diagrams.

X

Xʹ

X

Xʹ

X+Y

X

Y

X

Y

X ∙ Y

= 1

= 0

union intersection

complement

https://en.wikipedia.org/wiki/De_Morgan%27s_laws


De Morgan’s laws for sets

X

Xʹ

Y

Yʹ

(X ∙ Y)ʹ = Xʹ + Yʹ
(X ∙ Y)ʹ

Xʹ + Yʹ

X

Y

X

Y

X ∙ Y

X

Y



De Morgan’s laws for sets

X

Xʹ

Y

Yʹ

(X + Y)ʹ = Xʹ ∙ Yʹ

(X + Y)ʹ

Xʹ ∙ Yʹ

X

Y

X

Y

X + Y

X

Y



NAND and NOR gates are universal gates in the sense they can be used to build 

any other type of gate – they are preferred in all IC logic families because they 

are fast, economical, and easy to fabricate.

8. NAND and NOR universal gates                          

X (X ∙ X)ʹ = Xʹ

X (X ∙ 1)ʹ = Xʹ

X

X

Xʹ

Xʹ

1



inverter



8. NAND and NOR universal gates                          

X
(X+X)ʹ = Xʹ

X
(X+0)ʹ = Xʹ

X

X

Xʹ

Xʹ

0



inverter



8. NAND and NOR universal gates                          

(X ∙ Y)ʹ
X

Y

X ∙ Y X ∙ Y
X

Y

X

Y

Xʹ

Yʹ

(Xʹ ∙ Yʹ)ʹ
= X+Y

X+YX

Y



AND gate



OR gate



8. NAND and NOR universal gates                          

(X+Y)ʹ
X

Y

X+Y X+YX

Y

X

Y

Xʹ

Yʹ

(Xʹ +Yʹ)ʹ
= X ∙ Y

X

Y



OR gate



AND gate

X ∙ Y



A
B

C
D

F = AB + CD

F = (AB)ʹ ʹ + (CD) ʹ ʹ

F = ((AB)ʹ ∙  (CD)ʹ)ʹ 

bubbles cancel on same line, 

double-NOT

De Morgan’s theorem

A
B

C
D

A
B

C
D

NAND – NAND 

implementation

AND – OR 

implementation

9. NAND–NAND and NOR–NOR implementations

10. Bubble-to-bubble transformations, bubble pushing operations 

(AB)ʹ 

(CD)ʹ

(X ∙ Y)ʹ = Xʹ + Yʹ



A
B

C F = AB + C 

F = (AB)ʹ ʹ + (C) ʹ ʹ

F = [(AB)ʹ ∙  (C)ʹ]ʹ

De Morgan’s theorem

A
B

C

A
B

C

bubbles cancel on same line, 

double-NOT

NAND–NAND realizations

bubble-to-bubble transformations

bubble pushing operations 

(AB)ʹ 

Cʹ

(X ∙ Y)ʹ = Xʹ + Yʹ



more examples from Wakerly

De Morgan equivalents

NAND gate

bubbles cancel on same line

NAND–NAND realizations

bubble-to-bubble transformations

bubble pushing operations 

sum-of-products (SOP) form



De Morgan equivalents

more examples from Wakerly

NOR gate

NOR–NOR realizations

bubble-to-bubble transformations

bubble pushing operations 

NOR gates

product-of-sums (POS) form

bubbles cancel on same line



NOR

(a)  original

(b)  non-standard gate

(c)  eliminate non-standard gate
(d)  preferred inverter placement

more examples from Wakerly

NAND

NAND–NOR realizations

bubble-to-bubble transformations

bubble pushing operations 



(a)  two-level AND-OR

(b)  two-level NAND-NAND
(c)  2-input gates only

more examples from Wakerly

NOR

NAND

NAND
NAND

NAND–NAND realizations

bubble-to-bubble transformations

bubble pushing operations 

W∙X∙Y = (W∙X)ʹʹ ∙ (Y)ʹʹ = ( (WX)ʹ + Yʹ )ʹ 

De Morgan

NAND

G = W∙X∙Y + Y∙Z



Proofs of the various Boolean theorems can be given by simply verifying 

the truth tables of the two sides of the expressions. 

For example, to prove the covering theorem,  X + X ∙ Y = X,

we may evaluate both sides of the expression for all possible values of the 

Boolean variables X,Y, making a truth table for each side:

X Y    X ∙ Y      X + X ∙ Y           Alternative analytical proof:

0 0        0               0 X + X ∙ Y  = X ∙ (1+Y)

0 1        0               0 = X ∙ 1

1 0        0               1 = X

1 1        1               1

equal note, 1+Y = 1

11. Boolean theorem proofs



As another example, in order to prove the distributive theorem,  

X + Y ∙ Z = (X + Y) ∙ (X + Z)

we construct the truth tables for each side:

X  Y  Z   Y∙Z   X + Y∙Z   X + Y   X + Z  (X + Y) ∙ (X + Z)

0  0  0      0          0           0          0                     0

0  0  1      0          0             0          1                     0

0  1  0      0          0 1          0                    0

0  1  1      1          1 1          1                     1

1  0  0      0          1 1          1                     1

1  0  1      0          1 1          1                     1

1  1  0      0          1 1          1                     1

1  1  1      1          1 1          1                     1

3-bit binary pattern 



Analytical proof of the distributive theorem,

X + Y ∙ Z = (X + Y) ∙ (X + Z)

using the covering theorem, A + A ∙ B = A, and the idempotent theorem, 

A ∙ A = A,

(X + Y) ∙ (X + Z) = X ∙ X + X ∙ Y + X ∙ Z + Y ∙ Z

= X + X ∙ Y + X ∙ Z + Y ∙ Z

= X + X ∙ Y + X ∙ Z + Y ∙ Z

= X + X ∙ Z + Y ∙ Z

= X + Y ∙ Z 



MATLAB proof of the distributive theorem,

X + Y ∙ Z = (X + Y) ∙ (X + Z)

MATLAB code:

[X,Y,Z] = a2d(0:7,3);    % generate inputs

F1 = X | (Y&Z);          % left-hand side

F2 = (X|Y) & (X|Z);      % right-hand side

[X,Y,Z,F1,F2]            % print columns

X    Y    Z    F1   F2

-----------------------

0    0    0    0    0

0    0    1    0    0

0    1    0    0    0

0    1    1    1    1

1    0    0    1    1

1    0    1    1    1

1    1    0    1    1

1    1    1    1    1   



Set-theoretic proof of the distributive theorem,  X + Y ∙ Z = (X + Y) ∙ (X + Z)

X
Y

Z

Y ∙ Z

X + Y ∙ Z 

X + Y

X + Z

(X+Y) ∙ (X+Z)

X
Y

Z

X
Y

Z

X
Y

Z



Proofs of the consensus theorems:

X ∙ A + Xʹ ∙ B + A ∙ B = X ∙ A + Xʹ ∙ B + (X + Xʹ ) ∙ A ∙  B

= X ∙ A + X ∙ A ∙ B + Xʹ  ∙ B + Xʹ  ∙ A ∙ B

= X ∙ A ∙ (1+B) + Xʹ ∙ B ∙ (1+A)

= X ∙ A ∙ 1 + Xʹ ∙ B ∙ 1

= X ∙ A + Xʹ ∙  B

(X + A) (Xʹ +B) (A+B) = (X Xʹ  + XB + Xʹ A + AB)(A+B)

= (XB + Xʹ A + AB)(A+B)

= XB(A+B) + Xʹ A(A+B) + AB(A+B)

= X(BA+BB) + Xʹ (AA+AB) + AAB+BBA

= X(BA+B) + Xʹ (A+AB) + AB+BA

= XB(A+1) + Xʹ A(1+B) + AB

= XB + Xʹ A + AB 

= X Xʹ + XB + Xʹ A + AB

= (X+A) ∙ (Xʹ +B)                                  

dual

note:  X + Xʹ = 1

note:  A + 1 = 1

note:  AA = A

note:  XXʹ = 0



Set-theoretic proof

of the consensus theorem
X

A

B

X ∙ A

Xʹ ∙ B

A ∙ B

X ∙ A + Xʹ ∙ B + A ∙ B = X ∙ A + Xʹ ∙  B

X
A

B

X
A

B

X
A

B

X
A

B

X
A

B

X
A

B



Next, we discuss a few examples of using the Boolean properties and 

theorems to simplify logic expressions.

Simplification leads to more efficient implementations requiring fewer 

logic gates.

Although, the theorems can always be used to simplify an expression, a 

much better and easier approach is through the use of Karnaugh maps 

(K-maps) – they will be discussed in detail later on.

An additional requirement in designing logic circuits is the 

minimization of propagation delays through the various stages (or, 

levels) of the realization. 

It should be noted, however, that minimizing the number of logic gates 

does not necessarily guarantee shorter propagation delays.

12. Algebraic simplification of combinational logic expressions



literal:                 a single Boolean variable, e.g., X

product term:      a product of variables, e.g., XZ

sum term:            a sum of variables, e.g., Y+Z

minterm:             a product of input variables corresponding to a row in truth table

e.g., XYʹZ, corresponding to row 101 = 5

canonical SOP:   canonical minterm sum-of-products, e.g., X,Y,Z(0,3,4,6,7)

minterm list :      list of row numbers that appear in a canonical SOP

maxterm:             a sum of input variables, e.g., X+Yʹ+Z, 

corresponding to the complement of a row in the truth table

canonical POS:   canonical maxterm product-of-sums, e.g., X,Y,Z(1,2,5)

maxterm list :      list of row numbers that appear in a canonical POS

to be explained further later on

Nomenclature



implicant:   a minterm or sum of minterms appearing in a function F,  

if an implicant evaluates to 1, then so does F as a whole,

i.e., if, implicant=1, then it implies, F=1

prime implicant:   a simplified  implicant that cannot be combined into another

implicant that has fewer number of literals.

covers:   all implicants that account for all possible evaluations of the

function into F=1 (i.e., all the 1’s in a Karnaugh map).

essential prime implicant:   a prime implicant that contains an F=1 minterm

that is not included in any other prime implicant,

all essential prime implicants must be included in the

cover of the function.

In addition to the essential PIs, it may be necessary to include possible non-

essential PIs in order to achieve a complete cover, (if there are several such 

possibilities, one could choose the one that has the smallest number of literals.

Nomenclature



Product-of-Sums (POS) rule:  

F is the product of those maxterms that correspond

to the values F=0 (or, Fʹ =1) in the truth table

Notation:   F = (of the F=0 maxterms) =  canonical product-of-sums

as indicated by the row numbers in the truth table

Sum-of-Products (SOP) rule:  

F is the sum of those minterms that correspond                 

to the values F=1 in the truth table

Notation:   F = (of the F=1 minterms) = canonical sum-of-products

as indicated by the row numbers in the truth table

Nomenclature



row   X   Y   Z          F              minterms maxterms

0     0    0    0     F(0,0,0)        Xʹ ∙ Yʹ ∙ Zʹ         X + Y + Z

1     0    0    1     F(0,0,1)        Xʹ ∙ Yʹ ∙ Z          X + Y + Zʹ

2     0    1    0     F(0,1,0)        Xʹ ∙ Y  ∙ Zʹ         X + Yʹ + Z

3     0    1    1     F(0,1,1)        Xʹ ∙ Y ∙ Z          X + Yʹ + Zʹ

4     1    0    0     F(1,0,0)        X ∙  Yʹ ∙ Zʹ         Xʹ + Y + Z

5     1    0    1     F(1,0,1)        X ∙  Yʹ ∙ Z          Xʹ + Y + Zʹ

6     1    1    0     F(1,1,0)        X ∙  Y ∙  Zʹ         Xʹ + Yʹ + Z

7     1    1    1     F(1,1,1)        X ∙  Y ∙  Z          Xʹ + Yʹ + Zʹ

3-variable logic function  F(X,Y,Z)

complements of each other

by De Morgan

Truth-table representations with minterms or maxterms 



Example 1:   Prove the dual results,

X + Xʹ ∙ Y = X + Y

X ∙ (Xʹ +Y) = X ∙ Y

Proof: Using, A + Aʹ = 1, and  the distributive property: 

A + B ∙ C = (A+B) ∙ (A+C)

with, A = X, B = Xʹ, C = Y, we have,

X + Xʹ ∙ Y = (X+Xʹ) ∙ (X+Y) = 1 ∙  (X+Y) = X+Y

For the dual, we simply multiply the terms out, 

X ∙ (Xʹ +Y) = X ∙ Xʹ  + X ∙ Y = 0 + X ∙ Y = X ∙ Y

A + B ∙ C = (A+B) ∙ (A+C)

12. Algebraic simplification of combinational logic expressions



Example 2:  Truth table of multiplexer function from Unit-1

Z = Sʹ ∙ A ∙ Bʹ + Sʹ ∙ A ∙ B + S ∙ Aʹ ∙ B + S ∙ A ∙ B

= Sʹ ∙ A ∙ (Bʹ + B) + S ∙ (Aʹ + A) ∙ B

= Sʹ ∙ A ∙ 1 + S ∙ 1∙ B

= Sʹ ∙ A + S ∙ B

Sʹ ∙ A 

S ∙ B

Sʹ ∙ A ∙ Bʹ 

Sʹ ∙ A ∙ B 

S ∙ Aʹ ∙ B 

S ∙ A ∙ B

minterm SOP

Z = S,A,B(2,3,5,7)

rows

0

1

2

3

4

5

6

7



Example 2:  Truth table of multiplexer function from Unit-1

Zʹ = Sʹ ∙ Aʹ ∙ Bʹ + Sʹ ∙ Aʹ ∙ B + S ∙ Aʹ ∙ Bʹ + S ∙ A ∙ Bʹ

Z = (S+A+B) ∙ (S+A+Bʹ) ∙ (Sʹ+A+B) ∙ (Sʹ+Aʹ+B)

= (S+A) ∙ (Sʹ+B) = Sʹ ∙ A + S ∙ B + A ∙ B 

= Sʹ ∙ A + S ∙ B

Sʹ ∙Aʹ ∙ Bʹ 

Sʹ ∙ Aʹ ∙ B 

S ∙ Aʹ ∙ Bʹ 

S ∙ A ∙ Bʹ  

maxterm POS

Z = S,A,B(0,1,4,6)
Zʹ 

1

1

0

0

1

0

1

0

De Morgan

consensus

minterm SOP

Z = S,A,B(2,3,5,7)

combining

rows

0

1

2

3

4

5

6

7



Example 2:  Truth table of multiplexer function from Unit-1

Karnaugh map (K-map) simplification (to be discussed in detail later on)

Z = Sʹ ∙ A ∙ Bʹ + Sʹ ∙ A ∙ B + S ∙ Aʹ ∙ B + S ∙ A ∙ B

= Sʹ ∙ A + S ∙ B = Sʹ ∙ A + S ∙ B + A ∙ B

S
AB

00 01 11

1

0

1 1

1
Sʹ ∙ A 

S ∙ B

essential PI

essential PI

A ∙ B
non-essential PI,

consensus term

1

10
Sʹ ∙ A ∙ Bʹ 

Sʹ ∙ A ∙ B 

S ∙ Aʹ ∙ B 

S ∙ A ∙ B

blue areas  indicate 
a complete cover



Example 3:  For the truth table given in Table 3-5 of the Wakerly text, 

demonstrate the equivalence of the following expressions for F as a function of 

the Boolean variables X, Y, Z,

(1)  F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ 

(2)  F = YʹZʹ + YZ + XYZʹ

(3)  F = YʹZʹ + YZ + XZʹ

(4)  F = YʹZʹ + YZ + XY

(5)  F = YʹZʹ + YZ + XZʹ + XY

(6)  F = (Y + Zʹ)(X  + Yʹ + Z)

(7)  F = (X + Y + Zʹ)(X  + Yʹ + Z)(Xʹ + Y + Zʹ)

In particular, given (1) use the theorems to

demonstrate the equivalence of (2)-(7) to (1).                                                                   

truth table

X Y Z   F

0 0 0   1

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   1

1 0 1   0

1 1 0   1

1 1 1   1

minterm SOP

(sum-of-products)

maxterm POS
(product-of-sums)

literals,

product terms



(1)      (2)

F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ

= (Xʹ + X)YʹZʹ + (Xʹ + X)YZ + XYZʹ = YʹZʹ + YZ + XYZʹ

(1)      (4)

F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ

= XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZ + XYZʹ

= (Xʹ + X)YʹZʹ + (Xʹ + X)YZ + XY(Z + Zʹ) 

= YʹZʹ + YZ + XY

duplicated



(1)      (2)

F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ

= (Xʹ + X)YʹZʹ + (Xʹ + X)YZ + XYZʹ = YʹZʹ + YZ + XYZʹ

(2)      (3)

F = YʹZʹ + YZ + XYZʹ         

= (Yʹ + XY)Zʹ + YZ = (Yʹ + X) (Yʹ + Y) Zʹ + YZ

= (Yʹ + X) Zʹ + YZ = YʹZʹ + YZ + XZʹ

(2)      (4)

F = YʹZʹ + YZ + XYZʹ

= YʹZʹ + Y(Z + XZʹ) = YʹZʹ + Y(Z + X) (Z + Zʹ) 

= YʹZʹ + Y(Z + X)  = YʹZʹ + YZ + XY

(3)      (5)

F = YʹZʹ + (YZ + XZʹ) = YʹZʹ + (YZ + XZʹ + XY)

distributive

distributive

consensus

X + A ∙ B = (X+A) ∙ (X+B)



F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ 

Fʹ = XʹYʹZ + XʹYZʹ + XYʹZ 

F = (X + Y + Zʹ) (X  + Yʹ + Z) (Xʹ + Y + Zʹ)         Eq.(7)

truth table

X Y Z   F   F’

0 0 0   1   0  

0 0 1   0   1

0 1 0   0   1

0 1 1   1   0

1 0 0   1   0

1 0 1   0   1

1 1 0   1   0

1 1 1   1   0

De Morgan

justification of Eq.(7) 

from the truth table

minterm SOP for Fʹ 

(sum-of-products)

maxterm POS for F
(product-of-sums)

minterm SOP for F

(sum-of-products)



Previously (in Example 3) we considered the simplification of the truth 

table function given in Table 3-5 of the Wakerly text, and demonstrated the 

equivalence of the following expressions for F as a function of the Boolean 

variables X, Y, Z,

(1)   F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ 

(2)   F = YʹZʹ + YZ + XZʹ

(3)   F = YʹZʹ + YZ + XY

Karnaugh map examples – 1

truth table

X Y Z   F

0 0 0   1

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   1

1 0 1   0

1 1 0   1

1 1 1   1

XY

1 1

1 1

1

Z 00 01 11 10

0

1

YʹZʹ

XYYZ

XZʹ

essential PI

essential PI

blue areas  indicate 
a complete cover

essential PIs, must include 

either for a complete cover

one is essential, the other not

(to be fully explained later on)

p.64, gate-level realizations



Example 4:  For the truth table given below [ref. A. F. Kana, on Canvas], 

show the equivalence of the following expressions for F as a function of 

the Boolean variables X, Y, Z,

(1)  F = XʹYZ + XYʹZ + XYZʹ + XYZ

(2)  F = XʹYZ + XYʹZ + XY

(3)  F = XʹYZ + XZ + XYZʹ

(4)  F = YZ + XYʹZ + XYZʹ 

(5)  F = XY + YZ + XZ 

In particular, given Eq.(1) use the theorems to

demonstrate the equivalence of Eqs.(2)-(5) to Eq.(1).                                                                    

truth table

X Y Z   F

0 0 0   0

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   0

1 0 1   1

1 1 0   1

1 1 1   1

12. Algebraic simplification of combinational logic expressions



(1) (2)     F = XʹYZ + XYʹZ + XYZʹ + XYZ 

= XʹYZ + XYʹZ + XY(Zʹ + Z) = XʹYZ + XYʹZ + XY

(1)       (3)     F = XʹYZ + XYʹZ + XYZʹ + XYZ

= XʹYZ + X(Yʹ + Y)Z + XYZʹ = XʹYZ + XZ + XYZʹ

(1)       (4)     F = XʹYZ + XYʹZ + XYZʹ + XYZ

= (Xʹ + X)YZ + XYʹZ + XYZʹ = YZ + XYʹZ + XYZʹ

(2)       (5)     F = XʹYZ + XYʹZ + XY = XʹYZ + X(Y + YʹZ)

= XʹYZ + X(Y + Yʹ)(Y + Z) = XʹYZ +  X(Y + Z) 

= XʹYZ +  XY + XZ = Y( X + XʹZ)   + XZ 

= Y(X + Xʹ)(X + Z) + XZ = Y(X + Z) + XZ

= XY + YZ + XZ



(1) (5) , alternative method,    

F = XʹYZ + XYʹZ + XYZʹ + XYZ

= XʹYZ+ XYZ + XYʹZ+ XYZ + XYZʹ + XYZ

= (Xʹ + X)YZ + X(Yʹ + Y)Z + XY(Zʹ + Z)

= YZ + XZ + XY

duplicate XYZ and

use the property

A + A + A = A



XY

1

11 1

Z 00 01 11 10

0

1

XYYZ

XZ

all three are essential PIs

blue areas  indicate 
a complete cover

Example 4 – K-map method (to be fully explained later on):  For the truth 

table given below [ref. A. F. Kana], show the equivalence of the following 

expressions for F as a function of the Boolean variables X, Y, Z,

(1)  F = XʹYZ + XYʹZ + XYZʹ + XYZ

(5)  F = XY + YZ + XZ 

truth table

X Y Z   F

0 0 0   0

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   0

1 0 1   1

1 1 0   1

1 1 1   1



Example 5:  Provide two proofs of the equivalence of the following 

two expressions:

F = XʹY + XYʹ + XY

F = X + Y

Method 1:     F = XʹY + XYʹ + XY = XʹY + X(Yʹ + Y) =

= XʹY + X = X + Y   (from Example 1)

Method 2:     F = XʹY + XYʹ + XY

= XʹY + XYʹ + XY + XY =

= (Xʹ + X)Y + X(Yʹ + Y)

= X + Y 

replicate XY

using the property

A + A = A

12. Algebraic simplification of combinational logic expressions



Example 6:  Show the equivalence of the following two 4-variable 

expressions [ref. A. F. Kana], 

F = AʹBCʹD + AʹBCD + ABCʹDʹ + ABCʹD + ABCD + ABCDʹ + …

+ ABʹCD + ABʹCDʹ 

F = BD + AB + AC

Proof:    F = AʹBCʹD + AʹBCD + ABCʹDʹ + ABCʹD + ABCD + ABCDʹ + …

+ ABʹCD + ABʹCDʹ 

= AʹB(Cʹ + C)D + ABCʹDʹ + AB(Cʹ + C)D + ABCDʹ + …

+ ABʹCD + ABʹCDʹ

= AʹBD + ABCʹDʹ + ABD + ABCDʹ + ABʹCD + ABʹCDʹ

= (Aʹ + A)BD + AB(Cʹ + C)Dʹ + ABʹC(D + Dʹ)

= BD + ABDʹ + ABʹC = B(D + ADʹ) + ABʹC 

= B(D + A)(D + Dʹ) + ABʹC = B(D+A) + ABʹC = BD +AB + ABʹC 

= BD +A(B + BʹC) = BD +A(B + Bʹ)(B + C)  = BD +A(B + C) 

= BD + AB + AC
see next page for simpler K-map method



Previously (in Example 6), we showed the equivalence of the following two 

4-variable expressions [ref. A. F. Kana], 

F = AʹBCʹD + AʹBCD + ABCʹDʹ + ABCʹD + ABCD + ABCDʹ + ABʹCD + ABʹCDʹ 

F = BD + AB + AC

Karnaugh map examples – 5

AB

1

1 1

1 1 1

1 1

CD 00 01 11 10

00

01

11

10

AB

AC

BD

all three are essential PIs

blue areas  indicate 
a complete cover

if AB = 1,  then, A=1, B=1,  Aʹ=0,  Bʹ=0

F = CʹDʹ + CʹD + CD + CDʹ  

=  (C+Cʹ)(D+Dʹ) = 1 ∙ 1 = 1

implicant example

(to be fully explained later on)



Example 3, continued:  Previously (p.52), we demonstrated the equivalence of the 

following expressions for F as a function of the Boolean variables X, Y, Z,

F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ

F = YʹZʹ + YZ + XZʹ

As a first synthesis example, we wish to realize the  

second relationship by means of logic gates, and on the 

Emona board, and simulate it in MATLAB and Simulink, 

generate the given truth table and a timing diagram, and 

observe the input and output signals on a scope, 

and plot them in MATLAB.

The following files are on Canvas Resources, and may be

used as templates for future examples:

table35m.m, MATLAB m-file for the truth table and plotting

table35s.slx, Simulink file, 

table35v.v,   Verilog code generated by Simulink

truth table

X Y Z   F

0 0 0   1

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   1

1 0 1   0

1 1 0   1

1 1 1   1

13. Combinational circuit truth-table synthesis example



X

Yʹ

Y

Z

F

Zʹ

Y

Zʹ

X

Zʹ

Z

F = YʹZʹ + YZ + XZʹ

AND – OR realization

OR

AND

AND

AND



F = YʹZʹ + YZ + XZʹ

AND – OR realization

Emona board realization

X

Y

F

Z

1  0  0  1 1 0 1  1  1  0

truth table



X

Yʹ

Y

Z

F

Zʹ

Y

Zʹ

X

Zʹ

Z

F = YʹZʹ + YZ + XZʹ

F = (  (YʹZʹ)ʹ (YZ)ʹ (XZʹ)ʹ  )ʹ

NAND – NAND realization

De Morgan equivalents

NAND

NAND

NAND

NAND



X

Yʹ

Y

Z

F

Zʹ

Y

Z

F = (Y + Zʹ)(X + Yʹ + Z)

simplified POS realization

OR – AND realization

see next page for explanation

OR

AND

OR



F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ 

Fʹ = XʹYʹZ + XʹYZʹ + XYʹZ = (Xʹ + X)YʹZ + XʹYZʹ = YʹZ + XʹYZʹ 

F = (Y + Zʹ) (X + Yʹ + Z)          

truth table

X Y Z   F   F’

0 0 0   1   0  

0 0 1   0   1

0 1 0   0   1

0 1 1   1   0

1 0 0   1   0

1 0 1   0   1

1 1 0   1   0

1 1 1   1   0

De Morgan

simplified POS realization

minterm SOP form for F,

from the truth table

minterm SOP form for Fʹ,

from the truth table



F = YʹZʹ + YZ + XZʹ

AND–OR realization, F-function re-drawn with Simulink 

14. MATLAB/Simulink implementations, and exporting to Verilog



F = YʹZʹ + YZ + XZʹ

F-function embedded in executable Simulink realization 

F-function resides within this block

and can be exported to Verilog
needed for exporting X,Y,Z,F 

data to MATLAB’s workspace

plot

X,Y,Z,F 

signals

generate

X,Y,Z signals for 

timing diagram



Verilog code generated by Simulink – file table35v.v

module table35v (x, y, z, F);

input   x, y, z, F;

wire z_2; wire z_3; wire x_1; 

wire y_2; wire y_3; wire y_4; wire y_5;

wire xz_out1;

assign z_2 =  ~ z;

assign z_3 = z_2;

assign x_1 = x & z_3;

assign y_2 =  ~ y;

assign y_3 = y_2;

assign y_4 = y_3 & z_3;

assign y_5 = y & z;

assign xz_out1 = y_5 | (x_1 | y_4);

assign F = xz_out1;

endmodule



truth table

X Y Z   F

0 0 0   1

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   1

1 0 1   0

1 1 0   1

1 1 1   1

F = YʹZʹ + YZ + XZʹ

verify truth table

viewing timing diagram on scope



%% table35m.m – generating the truth table

[X,Y,Z] = a2d(0:7,3);   % 3-bit binary pattern

F = (~Y & ~Z)|(Y & Z)|(X & ~Z); % construct output F

[X,Y,Z,F]  % print truth table

%  X  Y  Z  F

%  ----------

%  0  0  0  1

%  0  0  1  0

%  0  1  0  0

%  0  1  1  1

%  1  0  0  1

%  1  0  1  0

%  1  1  0  1

%  1  1  1  1

MATLAB version of

F = YʹZʹ + YZ + XZʹ

the operations & and | are vectorized



% plot timing diagram

t = (0:8);     % last bit has duration from t=7 to t=8

x = [X; X(end)];         % extend duration of last bit

y = [Y; Y(end)];

z = [Z; Z(end)];

f = [F; F(end)];

set(0,'DefaultAxesFontSize',10);

figure;          % xaxis, yaxis are on Canvas M-files

subplot(4,1,1); 

stairs(t,x,'b-'); yaxis(0,2,0:1); xaxis(0,8,0:8); 

subplot(4,1,2); 

stairs(t,y,'b-'); yaxis(0,2,0:1); xaxis(0,8,0:8);   

subplot(4,1,3); 

stairs(t,z,'b-'); yaxis(0,2,0:1); xaxis(0,8,0:8);   

subplot(4,1,4); 

stairs(t,f,'r-'); yaxis(0,2,0:1); xaxis(0,8,0:8); 

xlabel('\itt');



0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

t

x

y

z

F

timing diagram



% plot timing diagram from saved simulation data

% extracted from the timeseries structure S

t = S.time;

x = S.data(:,1); 

y = S.data(:,2); 

z = S.data(:,3); 

F = S.data(:,4);

figure;         % xaxis,yaxis are on Canvas M-files

subplot(4,1,1); 

stairs(t,x,'b-’); yaxis(0,2,0:1); xaxis(0,8,0:8);  

subplot(4,1,2); 

stairs(t,y,'b-’); yaxis(0,2,0:1); xaxis(0,8,0:8);  

subplot(4,1,3); 

stairs(t,z,'b-’); yaxis(0,2,0:1); xaxis(0,8,0:8);  

subplot(4,1,4); 

stairs(t,F,'r-’); yaxis(0,2,0:1); xaxis(0,8,0:8); 

xlabel('\itt')

generating a better plot of the

timing diagram, than from the 

scope plot
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t

x

y

z

F

timing diagram from Simulink data exported to workspace



Additional notes on Simulink

click here to open 

Simulink Library

set simulation duration to 

8 time units



click here to open scope parameters and select 

4 axes (for X,Y,X,F) and time range of 8 units



double-click on the Signal 

Builder block to view the 

signals X,Y,Z over the time

range of 8 units

drag the signal edges to change the shape of the signals

can also be preloaded by

copy/pasting from the file

signals234.slx on Canvas



before exporting into Verilog, save the subfunction 

into a separate SLX Simulink file, then set the data 

types of the input/output ports to Boolean

select Code, then HDL code,

Options, and Verilog



row   X   Y   Z          F

0     0    0    0     F(0,0,0)

1     0    0    1     F(0,0,1)

2     0    1    0     F(0,1,0)

3     0    1    1     F(0,1,1)

4     1    0    0     F(1,0,0)

5     1    0    1     F(1,0,1)

6     1    1    0     F(1,1,0)

7     1    1    1     F(1,1,1)

row   X    Y         F

0      0    0      F(0,0)

1      0    1      F(0,1)

2      1    0      F(1,0)

3      1    1      F(1,1)

2-variable  F(X,Y) 3-variable  F(X,Y,Z)

15. Standard representations of combinational circuits

truth table representations

binary

order



row    A   B   C   D            F

0      0    0    0   0       F(0,0,0,0)

1      0    0    0   1       F(0,0,0,1)

2      0    0   1    0       F(0,0,1,0)

3      0    0   1    1       F(0,0,1,1)

4      0    1   0    0       F(0,1,0,0)

5      0    1   0    1       F(0,1,0,1)

6      0    1   1    0       F(0,1,1,0)

7      0    1   1    1       F(0,1,1,1)

8      1    0   0    0       F(1,0,0,0)

9      1    0   0    1       F(1,0,0,1)

10      1    0   1    0       F(1,0,1,0)

11      1    0   1    1       F(1,0,1,1)

12      1    1   0    0       F(1,1,0,0)

13      1    1   0    1       F(1,1,0,1)

14      1    1   1    0       F(1,1,1,0)

15      1    1   1    1       F(1,1,1,1)

4-variable function F(A,B,C,D)



row   X   Y   Z          F              minterms maxterms

0     0    0    0     F(0,0,0)        Xʹ ∙ Yʹ ∙ Zʹ         X + Y + Z

1     0    0    1     F(0,0,1)        Xʹ ∙ Yʹ ∙ Z          X + Y + Zʹ

2     0    1    0     F(0,1,0)        Xʹ ∙ Y  ∙ Zʹ         X + Yʹ + Z

3     0    1    1     F(0,1,1)        Xʹ ∙ Y ∙ Z          X + Yʹ + Zʹ

4     1    0    0     F(1,0,0)        X ∙  Yʹ ∙ Zʹ         Xʹ + Y + Z

5     1    0    1     F(1,0,1)        X ∙  Yʹ ∙ Z          Xʹ + Y + Zʹ

6     1    1    0     F(1,1,0)        X ∙  Y ∙  Zʹ         Xʹ + Yʹ + Z

7     1    1    1     F(1,1,1)        X ∙  Y ∙  Z          Xʹ + Yʹ + Zʹ

3-variable  F(X,Y,Z)

complements of each other

by De Morgan

Truth-table representations with minterms or maxterms 



row   X   Y           F         minterms maxterms

0     0    0       F(0,0)         Xʹ ∙ Yʹ           X + Y 

1     0    1       F(0,1)         Xʹ ∙ Y X + Yʹ 

2     1    0       F(1,0)         X ∙ Yʹ Xʹ + Y

3     1    1       F(1,1)         X ∙ Y Xʹ + Yʹ

2-variable  F(X,Y)

complements of each other

by De Morgan

Truth-table representations with minterms or maxterms 



Example 3, continued:  Previously, we demonstrated the equivalence of the 

following expressions for F as a function of the Boolean variables X, Y, Z,

F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ     =  (sum of minterms, SOP)

F = (X + Y + Zʹ)(X + Yʹ + Z)(Xʹ + Y + Zʹ) = (product of maxterms, POS)

They were based on the truth table shown on the right

(Table 3-5 of the Wakerly text)

To understand these expressions, we expand the truth 

table to also include the complement of F, that is, Fʹ,

obtained by interchanging 0s and 1s in the F column.

truth table

X Y Z   F

0 0 0   1

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   1

1 0 1   0

1 1 0   1

1 1 1   1



F = XʹYʹZʹ + XʹYZ + XYʹZʹ + XYZʹ + XYZ (minterm SOP, sum-of-products)

Fʹ = XʹYʹZ + XʹYZʹ + XYʹZ                              (minterms of Fʹ from truth table)

F = Fʹʹ = (XʹYʹZ + XʹYZʹ + XYʹZ)ʹ  =  (XʹYʹZ)ʹ (XʹYZʹ)ʹ (XYʹZ)ʹ  

F = (X + Y + Zʹ) (X + Yʹ + Z) (Xʹ + Y + Zʹ) (maxterm POS, product-of-sums)

truth table

X Y Z   F   F’  F minterms   F’ minterms   F maxterms

0 0 0   1   0     X’Y’Z’

0 0 1   0   1                  X’Y’Z        X+Y+Z’          

0 1 0   0   1                  X’Y Z’       X+Y’+Z

0 1 1   1   0     X’Y Z 

1 0 0   1   0     X Y’Z’

1 0 1   0   1                  X Y’Z        X’+Y+Z’ 

1 1 0   1   0     X Y Z’

1 1 1   1   0     X Y Z

(maxterms of F  =  (minterms of Fʹ ) ʹ

De Morgan

De Morgan



Product-of-Sums (POS) rule:  

F is the product of those maxterms that correspond

to the values F=0 (or, Fʹ =1) in the truth table

Notation:   F = (of the F=0 maxterms) =  canonical product-of-sums

as indicated by the row numbers in the truth table

Sum-of-Products (SOP) rule:  

F is the sum of those minterms that correspond                 

to the values F=1 in the truth table

Notation:   F = (of the F=1 minterms) = canonical sum-of-products

as indicated by the row numbers in the truth table

16. Canonical minterm/SOP and maxterm/POS representations



Example:

F = XʹYʹZʹ + XʹYZ + XYʹZʹ + XYZʹ + XYZ = X,Y,Z(0,3,4,6,7)

F = (X + Y + Zʹ) (X + Yʹ + Z) (Xʹ + Y + Zʹ) = X,Y,Z(1,2,5)

truth table

row  X Y Z   F    F’  

0 0 0 0   1 0   

1   0 0 1   0    1            

2   0 1 0   0    1  

3 0 1 1   1 0   

4 1 0 0   1 0    

5   1 0 1   0    1   

6 1 1 0   1 0    

7 1 1 1   1 0     

equivalent

how does it work?



X Y Z  F  minterms  X’Y’Z’  X’Y Z  X Y’Z’  X Y Z’  X Y Z      

0 0 0  1   X’Y’Z’     1       0      0       0       0  

0 0 1  0              0       0      0       0       0

0 1 0  0              0       0      0       0       0

0 1 1  1   X’Y Z      0       1      0       0       0

1 0 0  1   X Y’Z’     0       0      1       0       0

1 0 1  0              0       0      0       0       0

1 1 0  1   X Y Z’     0       0      0       1       0

1 1 1  1   X Y Z      0       0      0       0       1

[x,y,z] = a2d(0:7,3);

[x, y, z, ~x&~y&~z, ~x&y&z, x&~y&~z, x&y&~z, x&y&z]

F = OR’ing these five columns together

F = XʹYʹZʹ + XʹYZ + XYʹZʹ + XYZʹ + XYZ



X Y Z  F  maxterms  X+Y+Z’  X+Y’+Z   X’+Y+Z’       

0 0 0  1              1       1         1        

0 0 1  0   X+Y+Z’     0       1         1 

0 1 0  0   X+Y’+Z     1       0         1 

0 1 1  1              1       1         1       

1 0 0  1              1       1         1  

1 0 1  0   X’+Y+Z’    1       1         0  

1 1 0  1              1       1         1  

1 1 1  1              1       1         1  

[x,y,z] = a2d(0:7,3);

[x, y, z, x|y|~z, x|~y|z, ~x|y|~z]

F = AND’ing these three columns together

F = (X + Y + Zʹ) (X + Yʹ + Z) (Xʹ + Y + Zʹ)   



literal:                 a single Boolean variable, e.g., X

product term:      a product of variables, e.g., XZ

sum term:            a sum of variables, e.g., Y+Z

minterm:             a product of input variables corresponding to a row in truth table

e.g., XYʹZ, corresponding to row 101 = 5

canonical SOP:   canonical minterm sum-of-products, e.g., X,Y,Z(0,3,4,6,7)

minterm list :      list of row numbers that appear in a canonical SOP

maxterm:             a sum of input variables, e.g., X+Yʹ+Z, 

corresponding to the complement of a row in the truth table

canonical POS:   canonical maxterm product-of-sums, e.g., X,Y,Z(1,2,5)

maxterm list :      list of row numbers that appear in a canonical POS

Nomenclature



implicant:   a minterm or sum of minterms appearing in a function F,  

if an implicant evaluates to 1, then so does F as a whole,

i.e., if, implicant=1, then it implies, F=1

prime implicant:   a simplified  implicant that cannot be combined into another

implicant that has fewer number of literals.

covers:   all implicants that account for all possible evaluations of the

function into F=1 (i.e., all the 1’s in a Karnaugh map).

essential prime implicant:   a prime implicant that contains an F=1 minterm

that is not included in any other prime implicant,

all essential prime implicants must be included in the

cover of the function.

In addition to the essential PIs, it may be necessary to include possible non-

essential PIs in order to achieve a complete cover, (if there are several such 

possibilities, one could choose the one that has the smallest number of literals.

Nomenclature



17. Combinational circuit analysis – Example 1

Previously (in Example 3) we looked at a combinational circuit synthesis

problem, in which the circuit was defined  by a truth table, and we 

synthesized it in several equivalent ways using logic gates. 

Here, we look at an analysis example of a circuit constructed in terms of logic 

gates, as shown below, the objective being to determine its input/output 

function, F=f(X,Y,Z), and its truth table, construct its timing diagram, and 

additionally, realize it in alternative ways.

procedure: assign labels to the 

circuit lines and implement the 

indicated logic gate operations 

from the inputs to the output.F = (X+Yʹ)Z + XʹYZʹ = XZ + YʹZ + XʹYZʹ

Wakerly, Fig.3-8



NAND

NAND

F = (X+Yʹ)Z + XʹYZʹ 

F = XZ+YʹZ + XʹYZʹ

alternative realization based 

on the second expression

F = XZ+YʹZ + XʹYZʹ

NAND-NAND realization 

after bubble pushing



F = XZ + YʹZ + XʹYZʹ     truth table 

truth table

row  X Y Z   F 

0   0 0 0   0   

1   0 0 1   1            

2   0 1 0   1  

3   0 1 1   0   

4   1 0 0   0    

5   1 0 1   1   

6   1 1 0   0    

7   1 1 1   1     Wakerly, Table 3-7



[X,Y,Z] = a2d(0:7,3);              % 3-bit binary pattern

F = (X & Z) | (~Y & Z) | (~X & Y & ~Z);        % output F

[X,Y,Z,F]                  % collect X,Y,Z,F for printing

% print truth table

% X Y Z F

% -------

% 0 0 0 0   

% 0 0 1 1            

% 0 1 0 1  

% 0 1 1 0   

% 1 0 0 0    

% 1 0 1 1   

% 1 1 0 0    

% 1 1 1 1     

MATLAB code for

F = XZ+YʹZ + XʹYZʹ  

the operations & and | are vectorized

MATLAB implementation



module Acirc1f(

input X,Y,Z,

wire XN, YN, ZN, XYN, XYNZ, XNYZN,

output wire F

);

assign XN = ~X; assign YN = ~Y; assign ZN = ~Z;

assign XYN = X | YN; assign XYNZ = XYN & Z;

assign XNYZN = XN & Y  & ZN; assign F = XYNZ | XNYZN;

endmodule

© 2018 Pearson Education, J. F. Wakerly, Digital Design Principles and Practices, 5/e

Verilog code for

F = (X + Yʹ)Z + XʹYZʹ  

Verilog implementation



0 1 2 3 4 5 6 7 8
0

1
X

0 1 2 3 4 5 6 7 8
0

1
Y

0 1 2 3 4 5 6 7 8
0

1
Z

0 1 2 3 4 5 6 7 8
0

1
F

t

F = XZ+YʹZ + XʹYZʹ  - timing diagram 

truth table

row  X Y Z   F 

0   0 0 0   0   

1   0 0 1   1            

2   0 1 0   1  

3   0 1 1   0   

4   1 0 0   0    

5   1 0 1   1   

6   1 1 0   0    

7   1 1 1   1     



F = XZ+YʹZ + XʹYZʹ  - MATLAB code for timing diagram 

t = 0:8;

% see p.98 for definitions of X,Y,Z,F

X = [X; X(end)]; % replicate last entries

Y = [Y; Y(end)]; 

Z = [Z; Z(end)]; 

F = [F; F(end)];    % t,X,Y,Z now have length 9

figure;              

subplot(4,1,1); 

stairs(t,X,'b-'); yaxis(0,2,0:1); xaxis(0,8,0:8); 

subplot(4,1,2); 

stairs(t,Y,'b-'); yaxis(0,2,0:1); xaxis(0,8,0:8); 

subplot(4,1,3); 

stairs(t,Z,'b-'); yaxis(0,2,0:1); xaxis(0,8,0:8); 

subplot(4,1,4); 

stairs(t,F,'r-'); yaxis(0,2,0:1); xaxis(0,8,0:8);

xlabel('\itt')



F = (X+Yʹ)Z + XʹYZʹ

alternative representation based on product-of-sums

F = (X+Yʹ+Zʹ) (Xʹ+Z) (Y+Z) = (X+Y+Z) (X+Yʹ+Zʹ) (Xʹ+Y+Z) (Xʹ+Yʹ+Z) 

it is actually a simplified version of the canonical maxterm expansion, but a 

direct proof is as follows:

Using the ordinary distributive law, (X+A)(X+B) = (X+AB), we obtain the 

more general version of the distributive law,

(AB + CDE) = (A + C) (A + D) (A + E) (B + C) (B + D) (B + E)

and apply it with, A=X+Yʹ, B=Z, C=Xʹ, D=Y, E=Zʹ, and note that, X+1 = 1, 

X+Xʹ=1,

F = (X + Yʹ)Z + XʹYZʹ 

= (X + Yʹ + Xʹ) (X + Yʹ + Y) (X + Yʹ + Zʹ) (Z + Xʹ) (Z + Y) (Z + Zʹ)

= (1 + Yʹ) (X + 1) (X + Yʹ + Zʹ) (Z + Xʹ) (Z + Y) 1 =

= (X + Yʹ + Zʹ) (Xʹ + Z) (Y + Z) 



Proof of the generalized distributive law:

(AB + CDE) = (A + C) (A + D) (A + E) (B + C) (B + D) (B + E)

apply the ordinary distributive law, (X+A)(X+B) = (X+AB), in stages:

AB + CDE = (A + CDE) (B + CDE) 

= (A + C) (A + DE) (B + C) (B + DE) 

= (A + C) (A + D) (A + E) (B + C) (B + D)(B + E)

Next, we look at the minterm / maxterm canonical expansions 

of this example, and their simplifications



F = XʹYʹZ + XʹYZʹ + XYʹZ + XYZ  = minterm SOP 

F = (X + Y + Z) (X + Yʹ + Zʹ) (Xʹ + Y + Z) (Xʹ + Yʹ + Z)  = maxterm POS 

truth table

X Y Z   F   F’  minterms maxterms

0 0 0   0   1               X + Y + Z

0 0 1   1   0    X’Y’Z               

0 1 0   1   0    X’Y Z’     

0 1 1   0   1               X + Y’+ Z’

1 0 0   0   1               X’+ Y + Z

1 0 1   1   0    X Y’Z               

1 1 0   0   1               X’+ Y’+ Z

1 1 1   1   0    X Y Z

minterm / maxterm representations



minterms:  

F = XʹYʹZ + XʹYZʹ + XYʹZ + XYZ  = XʹYʹZ + XʹYZʹ + XYʹZ + XYʹZ + XYZ

=  (Xʹ + X)YʹZ + XʹYZʹ + X(Y + Yʹ)Z =

= YʹZ + XʹYZʹ + XZ

maxterms:  

F = (X + Y + Z) (X + Yʹ + Zʹ) (Xʹ + Y + Z) (Xʹ + Yʹ + Z) =

= (X + Y + Z) (X + Yʹ + Zʹ) (Xʹ + Y + Z) (Xʹ + Y + Z) (Xʹ + Yʹ + Z)

= (X + Y + Z) (Xʹ + Y + Z) (Xʹ + Y + Z) (Xʹ + Yʹ + Z) (X + Yʹ + Zʹ) 

= (Y + Z) (Xʹ + Z) (X + Yʹ + Zʹ) 

minterm / maxterm simplifications

replicated

property: (Y + A)(Y ʹ + A) = A 



product-of-sums form

using maxterms (OR-AND)

sum-of-products form

using minterms (AND-OR)



F = (Wʹ+X) ∙ Y ∙ (Wʹ+X+Yʹ) ∙ (W+Z)

De Morgan

17. Combinational circuit analysis – Example 2

Wakerly, Fig.3-11

F = [((W ∙ Xʹ) ∙ ʹY)ʹ + (Wʹ +X+Yʹ)ʹ + (W+Z)ʹ]ʹ

= ((Wʹ +X)ʹ+Yʹ)ʹ ∙ (W ∙ Xʹ ∙ Y) ∙ ʹ(Wʹ ∙ Zʹ)ʹ 

= ((W ∙ Xʹ)ʹ ∙ Y ∙ (Wʹ+X+Yʹ) ∙ (W+Z) 

= (Wʹ+X) ∙ Y ∙ (Wʹ+X+Yʹ) ∙ (W+Z)



NOR

NAND

De Morgan

De Morgan

bubbles cancel on same line

F = (Wʹ+X) ∙ Y ∙ (Wʹ+X+Yʹ) ∙ (W+Z)

Wakerly, Fig.3-12



F = (Wʹ+X) ∙ Y ∙ (Wʹ+X+Yʹ) ∙ (W+Z)

Wakerly, Fig.3-13



18. Combinational circuit synthesis

X

Y

Z

combinational

logic circuit F = f(X,Y,Z)

We recall that the analysis and synthesis problems are:

Analysis Problem: Given a combinational circuit made up of logic gates, 

determine the output F as a function of the input variables, X,Y,Z…

Synthesis/Design Problem: Given a combinational circuit defined by its I/O 

mapping, F = f(X,Y,Z,..), typically stated as a truth table, synthesize the 

circuit with logic gates, preferably using the minimum number of gates, as 

well as trying to minimize propagation delays.

Below, we present a few synthesis examples based on the circuit’s I/O 

mapping, F = f(X,Y,Z,..),  determined from a given (i) truth table, or, 

(ii) functional description of the circuit. Karnaugh maps provide a systematic 

synthesis method and will be discussed later on.



18. Combinational circuit synthesis row    A   B   C   D      F      minterms

0      0    0    0   0       0

1 0    0    0   1       1       AʹBʹCʹD

2 0    0   1    0       1       AʹBʹCDʹ

3 0    0   1    1       1       AʹBʹCD

4      0    1   0    0       0

5 0    1   0    1       1       AʹBCʹD

6      0    1   1    0       0

7 0    1   1    1       1       AʹBCD

8      1    0   0    0       0

9      1    0   0    1       0

10      1    0   1    0       0

11 1    0   1    1       1       ABʹCD

12      1    1   0    0       0

13 1    1   0    1       1       ABCʹD

14      1    1   1    0       0

15      1    1   1    1       0

F = A,B,C,D(1,2,3,5,7,11,13)

F = A,B,C,D(0,4,6,8,9,10,12,14,15) 

Example 1 – prime number detector

canonical minterm SOP form

canonical maxterm POS form

Wakerly, Sect.3.3.1



row    A   B   C   D      F      minterms

0      0    0    0   0       0

1 0    0    0   1       1       AʹBʹCʹD

2 0    0   1    0       1       AʹBʹCDʹ

3 0    0   1    1       1       AʹBʹCD

4      0    1   0    0       0

5 0    1   0    1       1       AʹBCʹD

6      0    1   1    0       0

7 0    1   1    1       1       AʹBCD

8      1    0   0    0       0

9      1    0   0    1       0

10      1    0   1    0       0

11 1    0   1    1       1       ABʹCD

12      1    1   0    0       0

13 1    1   0    1       1       ABCʹD

14      1    1   1    0       0

15      1    1   1    1       0

F = A,B,C,D(1,2,3,5,7,11,13) =

=   AʹBʹCʹD + AʹBʹCDʹ 

+ AʹBʹCD + AʹBCʹD 

+ AʹBCD + ABʹCD

+ ABCʹD

Example 1 – prime number detector



row    A   B   C   D      F        maxterms

0      0    0    0   0       0 A+B+C+D

1      0    0    0   1       1       

2      0    0   1    0       1          

3      0    0   1    1       1       

4      0    1   0    0       0 A+Bʹ+C+D

5      0    1   0    1       1       

6      0    1   1    0       0 A+Bʹ+Cʹ+D

7      0    1   1    1       1       

8      1    0   0    0       0 Aʹ+B+C+D

9      1    0   0    1       0 Aʹ+B+C+Dʹ

10      1    0   1    0       0 Aʹ+B+Cʹ+D

11      1    0   1    1       1       

12      1    1   0    0       0 Aʹ+Bʹ+C+D

13      1    1   0    1       1      

14      1    1   1    0       0       Aʹ+Bʹ+Cʹ+D

15      1    1   1    1       0      Aʹ+Bʹ+Cʹ+Dʹ

F = A,B,C,D(0,4,6,8,9,10,12,14,15) 

=   (A+B+C+D) ∙ (A+Bʹ+C+D)

∙ (A+Bʹ+Cʹ+D) ∙ (Aʹ+B+C+D)

∙ (Aʹ+B+C+Dʹ) ∙ (Aʹ+B+Cʹ+D)

∙ (Aʹ+Bʹ+C+D) ∙ (Aʹ+Bʹ+Cʹ+D)

∙ (Aʹ+Bʹ+Cʹ+Dʹ) 

Example 1 – prime number detector

=  (AʹBʹCʹDʹ) ʹ



F =   AʹBʹCʹD + AʹBʹCDʹ + AʹBʹCD + AʹBCʹD + AʹBCD + ABʹCD + ABCʹD

A

B

C

D

AʹBʹCʹD 

AʹBʹCDʹ 

AʹBʹCD 

AʹBCʹD 

AʹBCD 

ABʹCD 

ABCʹD

Aʹ 

Bʹ 

Cʹ 

Dʹ 

B 

C 

D 

A 



partial simplification:

F =  AʹBʹCʹD + AʹBʹCDʹ + AʹBʹCD + AʹBCʹD + AʹBCD + ABʹCD + ABCʹD

=  AʹCʹD + AʹBʹCDʹ + AʹCD + ABʹCD + ABCʹD

A

B

C

D

AʹD 

AʹBʹCDʹ 

ABʹCD 

ABCʹD

F =   AʹD + AʹBʹCDʹ + ABʹCD + ABCʹD



further simplification:

F =   AʹBʹCʹD                           

+ AʹBʹCDʹ

+ AʹBʹCD 

+ AʹBCʹD 

+ AʹBCD 

+ ABʹCD 

+ ABCʹD

AʹD

BʹCD

AʹBʹC

BCʹD

combine into 

F =   AʹD + AʹBʹC + BʹCD + BCʹD
this is also the form 

obtained with K-maps

F =   AʹBʹCʹD + AʹBʹCDʹ + AʹBʹCD + AʹBCʹD + AʹBCD + ABʹCD + ABCʹD



A

B

C

D

AʹD 

AʹBʹC 

BʹCD 

BCʹD

F =   AʹD + AʹBʹC + BʹCD + BCʹD

Example 1 – prime number detector

Matlab code:

[A,B,C,D] = a2d(0:15, 4);

F = (~A & D) | (~A & ~B & C) | (~B & C & D) | (B & ~C & D);



Karnaugh map for prime number detector

AʹD
AʹBʹC

BʹCD

BCʹD

AB

1

1 1

1

CD 00 01 11 10

00

01

11

10

1

1

1

F =  AʹBʹCʹD + AʹBʹCDʹ  + AʹBʹCD + AʹBCʹD  + AʹBCD + ABʹCD + ABCʹD

F = AʹD + AʹBʹC + BʹCD + BCʹD 

blue areas  indicate 
a complete cover

all are essential PIs



18. Combinational circuit synthesis

Example 2 – alarm circuit

Design a home alarm circuit whose functional description is as follows: 

The ALARM output is 1 if the PANIC-button input is 1, or if the ENABLE input 

is 1, the EXITING input is 0, and the house is not secure – the house is secure if 

the WINDOW, DOOR, and GARAGE inputs are all 1.

Translating this description into a Boolean algebraic expression, we have:

SECURE = WINDOW ∙ DOOR ∙ GARAGE

ALARM = PANIC + ENABLE ∙ EXITINGʹ ∙  SECUREʹ

= PANIC + ENABLE ∙ EXITINGʹ ∙  (WINDOW ∙ DOOR ∙ GARAGE)ʹ

= PANIC + ENABLE ∙ EXITINGʹ ∙  (WINDOWʹ + DOORʹ + GARAGEʹ)

= PANIC + ENABLE ∙ EXITINGʹ ∙ WINDOWʹ

+ ENABLE ∙ EXITINGʹ ∙ DOORʹ

+ ENABLE ∙ EXITINGʹ ∙ GARAGEʹ = sum-of-products form

Wakerly, Sect.3.3.1



18. Combinational circuit synthesis

Example 2 – alarm circuit

SECURE = WINDOW ∙ DOOR ∙ GARAGE

ALARM = PANIC + ENABLE ∙ EXITINGʹ ∙  SECUREʹ

This design has a serious limitation: If the alarm is set off because the house is not secure, 

then the alarm will turn off when the house becomes secure again, even though the alarm is 

still enabled (e.g., someone may break into the house through an alarmed door, and cause 

the alarm to turn off  by simply closing the door.) See unit-8, Example-1 for a similar 

example and how to fix it by introducing memory into the system (with D flip-flops).



Example 2 – alarm circuit

alternative realization

ALARM = PANIC + ENABLE ∙ EXITINGʹ ∙ WINDOWʹ

+ ENABLE ∙ EXITINGʹ ∙ DOORʹ

+ ENABLE ∙ EXITINGʹ ∙ GARAGEʹ = sum-of-products form



18. Combinational circuit synthesis

Example 3 – car dome light

Determine the Boolean function for a car dome light based on the following  

description [cf. Wakerly]:

The light has a 3-position switch such that the light turns on if the switch is in the 

ON position or if the middle switch MID is on and the door signal DOOR is also 

on when any door is open, otherwise the light is off when the switch is in the 

OFF position.

Translating this description into a Boolean algebraic expression, we have:

LIGHT = ON + MID ∙ DOOR

The circuit diagram with three inputs, ON, MID, DOOR, and one output LIGHT, is easily 

drawn using one AND gate and one OR gate.

DOOR

MID

ON

LIGHT

see p.163 for an alternative realization, and K-map derivations with don’t care entries



18. Combinational circuit synthesis

Example 4 – equality test

Given two 2-bit numbers, a, b, determine the Boolean function F that is equal to 1 

when the two numbers are equal, a = b, and is equal to 0 otherwise.

Let the two bits of each number be, a = (a1a0) , and, b = (b1b0)

F = (a1 b1 + a1ʹ b1ʹ) ∙ (a0 b0 + a0ʹ b0ʹ) = XNOR(a1, b1) ∙ XNOR(a0, b0)

The circuit diagram with four inputs, a1 , a0 , b1 , b0 , and one output F, is easily 

drawn using one AND gate and two XNOR gates

note, xnor(A,B) = 1 only if A=B (either both 0 or both 1) A   B    AB + AʹBʹ

0    0            1

0    1            0

1    0            0

1    1            1

a0

a1

b0

b1

F

XNOR

AND



19. Combinational circuit minimization – Karnaugh maps

Karnaugh maps (K-maps) are two-dimensional representations of truth tables

that provide an intuitive way to simplify a logic circuit and realize it with fewer 

logic gate operations. 

See also,

Karnaugh maps are convenient for 1-5 input variables. For more variables see 

the following more advanced methods,

Karnaugh maps - Wikipedia

logic minimization methods - Wikipedia

Quine-McCluskey algorithm - Wikipedia

Petrick's method - Wikipedia

https://en.wikipedia.org/wiki/Karnaugh_map
https://en.wikipedia.org/wiki/Logic_optimization#Circuit_minimization_in_Boolean_algebra
https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm
https://en.wikipedia.org/wiki/Petrick%27s_method


Consider a 3-variable function, F = f(A,B,C). In an ordinary truth table, the 

possible values of the Boolean variables A,B,C, and the corresponding values 

of F, are listed in linear arithmetic progression such that the row numbers are 

represented by their 3-bit binary-pattern, ABC, with each row corresponding to 

a particular minterm. 

In each row, the function F is either 0 or 1, and the corresponding minterms for 

which F=1 are added to represent the function as a sum-of-products.

In the Karnaugh map, on the other hand, the AB values are listed horizontally 

and the C values, vertically. However, the AB values are not listed in ordinary 

binary-order, but rather in Gray-code order such that only one bit changes in 

moving across from column to column. We recall from unit-2 that the ordinary 

2-bit binary-order for AB is:

AB = 00, 01, 10, 11

whereas the Gray-code order is:

AB = 00, 01, 11, 10

C 00 01 11 10

0

1

AB
Gray-code order



row    A B C      minterms

0       0  0  0        AʹBʹCʹ

1       0  0  1        AʹBʹC

2       0  1  0        AʹBCʹ

3       0  1  1        AʹBC

4       1  0  0        ABʹCʹ

5       1  0  1        ABʹC

6       1  1  0        ABCʹ

7       1  1  1        ABC

ordinary truth table

Karnaugh map

For a particular function, F = f(A,B,C), some of the indicated minterms will be 

replaced by 0’s and some by 1’s.

Gray-code order

C 00 01 11 10

0

1

AʹBʹCʹ AʹBCʹ ABCʹ ABʹCʹ

AʹBʹC AʹBC ABC ABʹC

AB



Two adjacent minterms, either horizontally or vertically,  combine to a simpler 

expression by eliminating that variable that has changed across the pair of 

minterms. 

This is a consequence of the identity, X + Xʹ = 1. 

The number of adjacent minterms must always be a power of 2, that is, the 

number of grouped minterms must be 1, 2, 4, for a 3-variable function, or,

1,2,4,8, for a 4-variable function.

Moreover, grouped adjacent minterms can overlap either horizontally or 

vertically.

To understand the simplification mechanism,  consider a few examples of 

groupings.



C 00 01 11 10

0

1

AʹBʹCʹ AʹBCʹ ABCʹ ABʹCʹ

AʹBʹC AʹBC ABC ABʹC

AB

C 00 01 11 10

0

1

AʹBʹCʹ AʹBCʹ ABCʹ ABʹCʹ

AʹBʹC AʹBC ABC ABʹC

AB

AʹBCʹ + ABCʹ = 

(Aʹ + A) BCʹ = BCʹ

AʹBCʹ + AʹBC = 

AʹB(Cʹ + C) = AʹB

here, A is changing 

and was eliminated

here, C is changing 

and was eliminated

two adjacent terms, horizontally or vertically



C 00 01 11 10

0

1

AʹBʹCʹ AʹBCʹ ABCʹ ABʹCʹ

AʹBʹC AʹBC ABC ABʹC

AB

C 00 01 11 10

0

1

AʹBʹCʹ AʹBCʹ ABCʹ ABʹCʹ

AʹBʹC AʹBC ABC ABʹC

AB

AʹBCʹ + ABCʹ = (Aʹ + A)BCʹ = BCʹ

ABCʹ  + ABʹCʹ = A(B + Bʹ)Cʹ = ACʹ 
total = BCʹ + ACʹ 

two horizontally overlapping groups of 2

two vertically overlapping groups of 2

AʹBCʹ + ABCʹ + AʹBCʹ + AʹBC =

=  (Aʹ + A)BCʹ + AʹB(Cʹ + C) = 
= BCʹ + AʹB 

replicated term

Variable A varies across the first group, 

and B across the second. The ABCʹ term 

was replicated based on the property, 
X + X = X



C 00 01 11 10

0

1

AʹBʹCʹ AʹBCʹ ABCʹ ABʹCʹ

AʹBʹC AʹBC ABC ABʹC

AB

C 00 01 11 10

0

1

AʹBʹCʹ AʹBCʹ ABCʹ ABʹCʹ

AʹBʹC AʹBC ABC ABʹC

AB

AʹBCʹ + ABCʹ + AʹBC + ABC

= (Aʹ + A)BCʹ + (Aʹ + A)BC

= BCʹ + BC = 

= B(Cʹ + C) = B

AʹBʹCʹ + AʹBCʹ + ABCʹ + ABʹCʹ

= Aʹ(Bʹ + B)Cʹ+A(B + Bʹ)Cʹ

= AʹCʹ+ACʹ = (Aʹ + A)Cʹ

= Cʹ 

group of 4 horizontal/vertical terms

group of 4 horizontally adjacent terms

The variable A varies horizontally, and 
C, vertically. Both A,C were eliminated.

Variables A,B vary horizontally across 
adjacent cells, and were eliminated.



C 00 01 11 10

0

1

AʹBʹCʹ AʹBCʹ ABCʹ ABʹCʹ

AʹBʹC AʹBC ABC ABʹC

AB

C 00 01 11 10

0

1

AʹBʹCʹ AʹBCʹ ABCʹ ABʹCʹ

AʹBʹC AʹBC ABC ABʹC

AB

AʹBʹCʹ + ABʹCʹ + AʹBʹC + ABʹC

= (Aʹ + A)BʹCʹ + (Aʹ + A)BʹC

= BʹCʹ + BʹC = 

= Bʹ(Cʹ + C) = Bʹ

AʹBʹCʹ + ABʹCʹ

= (Aʹ + A) BʹCʹ = BʹCʹ 

left and right edges wrap around

Variable A varies horizontally across the 
wrapped cells, and was eliminated.

left and right edges wrap around

Variable A varies horizontally, and C, 

vertically across the wrapped square, 
thus, both A,C were eliminated.

ABC



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

row    A B C D       minterms

0      0  0  0  0        AʹBʹCʹDʹ

1      0  0  0  1        AʹBʹCʹD

2      0  0  1  0        AʹBʹCDʹ

3      0  0  1  1        AʹBʹCD

4      0  1  0  0        AʹBCʹDʹ

5      0  1  0  1        AʹBCʹD

6      0  1  1  0        AʹBCDʹ

7      0  1  1  1        AʹBCD

8      1  0  0  0        ABʹCʹDʹ

9      1  0  0  1        ABʹCʹD 

10      1  0  1  0        ABʹCDʹ

11      1  0  1  1        ABʹCD

12      1  1  0  0        ABCʹDʹ

13      1  1  0  1        ABCʹD

14      1  1  1  0        ABCDʹ

15      1  1  1  1        ABCD   

4-variable Karnaugh map

Gray-code order

Gray-code order



C 00 01 11 10

0

1

AB

Karnaugh map 

truth-table row-number ordering

CD 00 01 11 10

00

01

11

10

AB

B 0 1

0

1

A

0

1

2

3

0

1

2

3

6

7

4

5

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

variables C,D vary vertically 

across adjacent cells, and are 

eliminated.

simplifies into = AʹB



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

variables A,B vary horizontally 

across adjacent cells, and are 

eliminated.

simplifies into = CD



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

simplifies into = AʹB + CD



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

simplifies into = BʹCʹ + BC



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

simplifies into = BCʹ + AB

always choose the largest 

sub-areas of adjacent cells, 

containing 2, 4, or, 8 minterms



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

simplifies into = BD + AC



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

simplifies into = ABDʹ + BʹCʹ 

top/bottom and left/right 

edges wrap around



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map
simplifies into = AʹDʹ + BʹC 

top/bottom and left/right 

edges wrap around



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

simplifies into = BʹDʹ  

top/bottom and left/right 
corners wrap around



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

simplifies into 

= AʹCʹ + AC + BCʹ  

or, into
= AʹCʹ + AC + AB 

AʹCʹ BCʹ AB

AC

always choose the largest 

sub-areas of adjacent cells, 

containing 2, 4, or, 8 minterms

the BCʹ and AB areas are partially 

covered by each other, and by the  

other areas AʹCʹ and AC, so only 

one of them, BCʹ or AB, needs to 

be included – including both 

would be redundant



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

simplifies into 
= BʹDʹ + AʹC + BCD 

top/bottom and left/right 

corners wrap around

BCD AʹC

BʹDʹ

always choose the largest 

sub-areas of adjacent cells, 

containing 2, 4, or, 8 minterms

essential PI

essential PI



CD 00 01 11 10

00

01

11

10

AʹBʹCʹDʹ AʹBCʹDʹ ABCʹDʹ ABʹCʹDʹ

AʹBʹCʹD

AʹBʹCD

AʹBʹCDʹ

AʹBCʹD

AʹBCD

AʹBCDʹ

ABCʹD

ABCD

ABCDʹ

ABʹCʹD

ABʹCD

ABʹCDʹ

AB

4-variable Karnaugh map

simplifies into 

F = BʹC + CDʹ + BCʹD + AʹC 

left/right corners wrap around

CDʹ

BʹC essential PI

non-essential PIsessential PI

AʹC 

BCʹD essential PI

AʹBD

essential PIs

simplest non-essential PI



implicant:   a minterm or sum of minterms appearing in a function F,  

if an implicant evaluates to 1, then so does F as a whole,

i.e., if, implicant=1, then it implies, F=1

prime implicant:   a simplified  implicant that cannot be combined into another

implicant that has fewer number of literals.

covers:   all implicants that account for all possible evaluations of the

function into F=1 (i.e., all the 1’s in a Karnaugh map).

essential prime implicant:   a prime implicant that contains an F=1 minterm

that is not included in any other prime implicant,

all essential prime implicants must be included in the

cover of the function.

In addition to the essential PIs, it may be necessary to include possible non-

essential PIs in order to achieve a complete cover, (if there are several such 

possibilities, one could choose the one that has the smallest number of literals.

Nomenclature



AB

1 1 1

1 1 1

1

1

CD 00 01 11 10

00

01

11

10

AB

1 1

1 1

1

CD 00 01 11 10

00

01

11

10

(non-prime) implicant

essential prime implicants

non-essential PI, already covered by 
other essential PIs, consensus term

11

blue areas indicate 
a complete cover

simplifies into = AʹBʹ + BD 

= AʹBʹ + BD + AʹD = with all PIs + consensus

simplifies into = AʹD + ABDʹ + ACʹ Dʹ

essential prime implicants



Summary

Karnaugh map minimization steps for combinational functions of 2, 3, 

or, 4 Boolean variables:

1. Place 1’s in the squares of the K-map for those minterms where F=1.

2. For each such minterm, find the largest sub-area containing that 

minterm – these are the prime implicants. The number of elements in 

such subareas must be a power of 2, e.g., 2,4,8,etc.

3. Identify the essential prime implicants covering those minterms that 

are not covered by any other prime implicant.

4. All of the essential prime implicants must be included in the final 

simplified expression, and in addition, include any other prime 

implicants so that all minterms of the function are covered. 

5. Any particular minterm may be covered by more than one prime 

implicant, but all minterms must be covered. 



Previously (in Example 3) we considered the simplification of the truth 

table function given in Table 3-5 of the Wakerly text, and demonstrated the 

equivalence of the following expressions for F as a function of the Boolean 

variables X, Y, Z,

(1)   F = XʹYʹZʹ + XYʹZʹ + XʹYZ + XYZ + XYZʹ 

(2)   F = YʹZʹ + YZ + XZʹ

(3)   F = YʹZʹ + YZ + XY

Karnaugh map examples – 1

truth table

X Y Z   F

0 0 0   1

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   1

1 0 1   0

1 1 0   1

1 1 1   1

XY

1 1

1 1

1

Z 00 01 11 10

0

1

YʹZʹ

XYYZ

XZʹ

essential PI

essential PI

blue areas  indicate 
a complete cover

non-essential PIs, include 

either one for complete cover



alternative way of arranging the variables in the K-map – the final 

answer is the same

Karnaugh map examples – 1

truth table

X Y Z   F

0 0 0   1

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   1

1 0 1   0

1 1 0   1

1 1 1   1

YZ

1

11

1

X 00 01 11 10

0

1

YʹZʹ

XY

YZ
XZʹ

essential PIs

include either one 

for complete cover

1

F = YʹZʹ + YZ + XZʹ

F = YʹZʹ + YZ + XY

blue areas  indicate 
a complete cover



yet, another way of drawing the K-map

Karnaugh map examples – 1

truth table

X Y Z   F

0 0 0   1

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   1

1 0 1   0

1 1 0   1

1 1 1   1

YʹZʹ

XY

YZ

XZʹ

essential PI

essential PI

non-essential PIs, 

include either one 

for complete cover

Z

1 1

1

1

1

XY

00

01

11

10

10

F = YʹZʹ + YZ + XZʹ

F = YʹZʹ + YZ + XY

blue areas  indicate 
a complete cover



Truth table of multiplexer function and its simplification:

Z = Sʹ ∙ A ∙ Bʹ + Sʹ ∙ A ∙ B + S ∙ Aʹ ∙ B + S ∙ A ∙ B

= Sʹ ∙ A + S ∙ B

Sʹ ∙ A 

S ∙ B

Sʹ ∙ A ∙ Bʹ 

Sʹ ∙ A ∙ B 

S ∙ Aʹ ∙ B 

S ∙ A ∙ B

Karnaugh map examples – 2



Truth table of multiplexer function and its simplification:

Z = Sʹ ∙ A ∙ Bʹ + Sʹ ∙ A ∙ B + S ∙ Aʹ ∙ B + S ∙ A ∙ B

= Sʹ ∙ A + S ∙ B = Sʹ ∙ A + S ∙ B + A ∙ B

S
AB

00 01 11

1

0

1 1

1
Sʹ ∙ A 

S ∙ B

essential PI

essential PI

A ∙ B
non-essential PI,

consensus term

1

10
Sʹ ∙ A ∙ Bʹ 

Sʹ ∙ A ∙ B 

S ∙ Aʹ ∙ B 

S ∙ A ∙ B

blue areas  indicate 
a complete cover

Karnaugh map examples – 2



Previously (in Example 4), we considered the truth table given below 

[ref. A. F. Kana], and showed the equivalence of the following 

expressions for F as a function of the Boolean variables X, Y, Z,

(1)  F = XʹYZ + XYʹZ + XYZʹ + XYZ

(2)  F = XY + YZ + XZ 

F may be viewed as implementing a 

voting majority gate, that is, F=1, 

if two or more input variables are 1

truth table

X Y Z   F

0 0 0   0

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   0

1 0 1   1

1 1 0   1

1 1 1   1

Karnaugh map examples – 3

XY

1

11 1

1

Z 00 01 11 10

0

1

XY

YZ all three are essential PIs

XZ

blue areas  indicate 
a complete cover



Previously (in Example 5) we showed the equivalence of the following 

two expressions:

F = XʹY + XYʹ + XY

F = X + Y

It can be understood simply by a 2-variable K-map.

Karnaugh map examples – 4

X

1

1 1

Y 0 1

0

1

X

both are essential PIs
Y

blue areas  indicate 
a complete cover



Previously (in Example 6), we showed the equivalence of the following two 

4-variable expressions [ref. A. F. Kana], 

F = AʹBCʹD + AʹBCD + ABCʹDʹ + ABCʹD + ABCD + ABCDʹ + ABʹCD + ABʹCDʹ 

F = BD + AB + AC

Karnaugh map examples – 5

AB

1

1 1

1 1 1

1 1

CD 00 01 11 10

00

01

11

10

AB

AC

BD

all three are essential PIs

blue areas  indicate 
a complete cover

if AB = 1,  then, A=1, B=1,  Aʹ=0,  Bʹ=0

F = CʹDʹ + CʹD + CD + CDʹ  

=  (C + Cʹ)(D + Dʹ) = 1 ∙ 1 = 1

example of implicant



Previously, we arrived at the following equivalent expressions for a 

prime number detector,

F = A,B,C,D(1,2,3,5,7,11,13) =

F =  AʹBʹCʹD + AʹBʹCDʹ  + AʹBʹCD + AʹBCʹD  + AʹBCD + ABʹCD + ABCʹD

F = AʹD + AʹBʹC + BʹCD + BCʹD 

Karnaugh map examples – 6

A

B

C

D

AʹD 

AʹBʹC 

BʹCD 

BCʹD



Karnaugh map examples – 6

AʹD
AʹBʹC

BʹCD

BCʹD

AB

1

1 1

1

CD 00 01 11 10

00

01

11

10

1

1

1

F =  AʹBʹCʹD + AʹBʹCDʹ  + AʹBʹCD + AʹBCʹD  + AʹBCD + ABʹCD + ABCʹD

F = AʹD + AʹBʹC + BʹCD + BCʹD 

blue areas  indicate 
a complete cover

all are essential PIs



row    A B C D       F         Fʹ

0      0  0  0  0       1         0

1      0  0  0  1       0         1

2      0  0  1  0       1         0

3      0  0  1  1       0         1

4      0  1  0  0       1         0

5      0  1  0  1       1         0

6      0  1  1  0       1         0

7      0  1  1  1       1         0

8      1  0  0  0       1         0

9      1  0  0  1       0         1

10      1  0  1  0       1         0

11      1  0  1  1       0         1

12      1  1  0  0       1         0

13      1  1  0  1       0         1

14      1  1  1  0       1         0

15      1  1  1  1       1         0

Determine the minimum product-of-sums

expression for the function F with the 

following truth table.

AB

1

1

CD 00 01 11 10

00

01

11

10

1

1

1

K-map for Fʹ

ACʹD

BʹD

Fʹ = BʹD + ACʹD

F = (B + Dʹ)(Aʹ + C + Dʹ) 

Karnaugh map examples – 7

De Morgan



Using K-maps, determine a simplified sum-

of-products form for the function,

F = XY + ZXʹ + ZYʹ

truth table

X Y Z   F

0 0 0   0

0 0 1   1

0 1 0   0

0 1 1   1

1 0 0   0

1 0 1   1

1 1 0   1

1 1 1   1

XY

1

11 1

Z 00 01 11 10

0

1

XY

Z1

F = XY + Z

Karnaugh map examples – 8

[x,y,z] = a2d(0:7,3);

f = (x&y) | (z&~x) | (z&~y);

[x,y,z,f]



row    A B C D       F

0      0  0  0  0       1

1      0  0  0  1       0

2      0  0  1  0       1

3      0  0  1  1       1

4      0  1  0  0       0

5      0  1  0  1       1

6      0  1  1  0       1

7      0  1  1  1       1

8      1  0  0  0       1

9      1  0  0  1       1

10      1  0  1  0       x

11      1  0  1  1       x

12      1  1  0  0       x

13      1  1  0  1       x

14      1  1  1  0       x

15      1  1  1  1       x

How to handle incompletely specified,  or 

don’t care, entries in the truth table.

rule: treat them as 1’s in the minterm form

AB
CD 00 01 11 10

00

01

11

10

A

BD

F = BʹDʹ + BD + A + C

1

1

1

1

1

1

1

1

x

x

x

x

x

x

BʹDʹ

C

Karnaugh map examples – 9



row    A B C D       F

0      0  0  0  0       1

1      0  0  0  1       0

2      0  0  1  0       1

3      0  0  1  1       1

4      0  1  0  0       0

5      0  1  0  1       1

6      0  1  1  0       1

7      0  1  1  1       1

8      1  0  0  0       1

9      1  0  0  1       1

10      1  0  1  0      1

11      1  0  1  1       1

12      1  1  0  0       1

13      1  1  0  1       1

14      1  1  1  0       1

15      1  1  1  1       1

[A,B,C,D] = a2d(0:15,4);

F = (~B & ~D) | (B & D) | A | C;

[A,B,C,D,F]

CD 00 01 11 10

00

01

11

10

A

BD

don’t cares are effectively replaced by 1’s

1

1

1

1

1

1

1

1

1

1

1

1

1

1

BʹDʹ

C

Karnaugh map examples – 9

F = BʹDʹ + BD + A + C

AB



Karnaugh map examples – 10

Car dome light example (from p.122)

The light has a 3-position switch such that 

the light turns on if the switch is in the ON 

position or if the middle switch MID is on 

and the door signal DOOR is also on when 

any door is open, otherwise the light is off 

when the switch is in the OFF position.

Translating this description into a Boolean 

algebraic expression, we have:

LIGHT = ON + MID ∙ DOOR

x’s denote don’t care or unrealizable entries

because the switch can only be at one of 3 positions

OFF  MID  ON  DOOR  LIGHT

0    0    0    0     x

0    0    0    1     x

0    0    1    0     1

0    0    1    1     1

0    1    0    0     0

0    1    0    1     1

0    1    1    0     x

0    1    1    1     x

1    0    0    0     0

1    0    0    1     0

1    0    1    0     x

1    0    1    1     x

1    1    0    0     x

1    1    0    1     x

1    1    1    0     x

1    1    1    1     xDOOR
MID

ON

LIGHT



OFF,MID

ON,DOOR 00 01 11 10

00

01

11

10

ON

MID·DOOR

x

1

1

x

x

1

x

x

x

x

x

x

Karnaugh map examples – 10

OFF  MID  ON  DOOR  LIGHT

0    0    0    0     x

0    0    0    1     x

0    0    1    0     1

0    0    1    1     1

0    1    0    0     0

0    1    0    1     1

0    1    1    0     x

0    1    1    1     x

1    0    0    0     0

1    0    0    1     0

1    0    1    0     x

1    0    1    1     x

1    1    0    0     x

1    1    0    1     x

1    1    1    0     x

1    1    1    1     x

x

don’t cares are treated as1’s

LIGHT = ON + MID·DOOR

alternative grouping leads to

LIGHT = ON + (OFF)’·DOOR 

not all don’t cares were used here

not all don’t cares were used here



OFF  MID  ON  DOOR  LIGHT  L1  L2

0    0    0    0     x    0   0

0    0    0    1     x    0   1

0    0    1    0     1    1   1

0    0    1    1     1    1   1

0    1    0    0     0    0   0

0    1    0    1     1    1   1

0    1    1    0     x    1   1

0    1    1    1     x    1   1

1    0    0    0     0    0   0

1    0    0    1     0    0   0

1    0    1    0     x    1   1

1    0    1    1     x    1   1

1    1    0    0     x    0   0

1    1    0    1     x    1   0

1    1    1    0     x    1   1

1    1    1    1     x    1   1

L1 = ON + MID·DOOR

L2 = ON + (OFF)’·DOOR 

Karnaugh map examples – 10

% MATLAB code:

[off,mid,on,door] = a2d(0:15,4);

L1 = on | (mid & door);

L2 = on | (~off & door);

[off,mid,on,door,L1,L2] % print

don’t cares are treated as1’s

because not all don’t cares were used in deriving L1 and L2, the full L1 and L2  columns are
different. However, they agree on the relevant/realizable part of the truth table (shown in red)



row    a  b  c  d       F

0      0  0  0  0       0

1      0  0  0  1       0

2      0  0  1  0       0

3      0  0  1  1       0

4      0  1  0  0       1

5      0  1  0  1       1

6      0  1  1  0       0

7      0  1  1  1       0

8      1  0  0  0       0

9      1  0  0  1       0

10      1  0  1  0       0

11      1  0  1  1       1

12      1  1  0  0       1

13      1  1  0  1       1

14      1  1  1  0       0

15      1  1  1  1       1

lab-2 derivations using K-maps

F = bcʹ + acd

Karnaugh map examples – 11

a

F

b

d

c

[a,b,c,d] = a2d(0:15,4);

F = (b & ~c) | (a & c & d);

[a,b,c,d,F]    % print truth table



row    a  b  c  d       F

0      0  0  0  0       0

1      0  0  0  1       0

2      0  0  1  0       0

3      0  0  1  1       0

4      0  1  0  0       1

5      0  1  0  1       1

6      0  1  1  0       0

7      0  1  1  1       0

8      1  0  0  0       0

9      1  0  0  1       0

10      1  0  1  0       0

11      1  0  1  1       1

12      1  1  0  0       1

13      1  1  0  1       1

14      1  1  1  0       0

15      1  1  1  1       1

F = bcʹ + acd

F = bcʹ + acd + abd

F = a'bc'd' + a'bc'd + ab'cd + abc'd' + abc'd + abcd

Karnaugh map examples – 11

ab

1

1

cd 00 01 11 10

00

01

11

10

1

lab-2 derivations using K-maps

1

1

1

bcʹ

acd

consensus term
abd

essential PI

essential PI

canonical minterm SOP expansion



row    a  b  c  d       F

0      0  0  0  0       0

1      0  0  0  1       0

2      0  0  1  0       0

3      0  0  1  1       0

4      0  1  0  0       1

5      0  1  0  1       1

6      0  1  1  0       0

7      0  1  1  1       0

8      1  0  0  0       0

9      1  0  0  1       0

10      1  0  1  0       0

11      1  0  1  1       1

12      1  1  0  0       1

13      1  1  0  1       1

14      1  1  1  0       0

15      1  1  1  1       1

Fʹ = aʹc + bʹcʹ + cdʹ = sum-of-products for Fʹ

F = (a + cʹ)(b + c)(cʹ + d) = product-of-sums

Karnaugh map examples – 11

ab
cd 00 01 11 10

00

01

11

10

lab-2 derivations using K-maps

cdʹ

all three are 
essential PIs

0

0

0

0 0 0 0

0

0

0

bʹcʹ

aʹc

simplified POS expansion

if they were 
minterms for Fʹ

De Morgan



20. Timing hazards – static hazards effects of propagation delays

delay through inverter

delays through AND gates

F = XZʹ + YZ

lab 2 and Wakerly, Fig.3-26

referred to as static-1 hazard,

note: the dual of the above circuit 

would exhibit a static-0 hazard, 

see also Wakerly Fig. 3-27

delay through OR gate

X = 1

Y = 1



YZ

XY

1 1

1 1

Z 00 01 11 10

0

1

XZʹ

XY

1 1

1 1

Z 00 01 11 10

0

1

XY

F = XZʹ + YZ F = XZʹ + YZ + XY

X Y Z   F

0 0 0   0

0 0 1   0

0 1 0   0

0 1 1   1

1 0 0   1

1 0 1   0

1 1 0   1

1 1 1   1

consensus term,

non-essential PI

[X,Y,Z] = a2d(0:7,3);  % 3-bit binary pattern

F = (X & ~Z)|(Y & Z);

[X,Y,Z,F]              % print truth table

MATLAB code for generating truth table

essential PIs

X ∙ A + Xʹ ∙ B = X ∙ A + Xʹ ∙ B + A ∙ B      (consensus)

adjacent pairs of 1’s

must be covered

by a PI to prevent
the timing hazard



F = XZʹ + YZ + XY

20. Timing hazards – static hazards

look at these individual outputs

consensus term

Wakerly, Fig.3-29



Simulink Implementation

Simulink file: fig326a.slx

F = XZʹ + YZ

F = XZʹ + YZ + XY



without delays

Simulink: subfunction contained in fig326a.slx

consensus term

F = XZʹ + YZ

F = XZʹ + YZ + XY



0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

t

X,Y

Z

Zʹ

YZ

XZʹ

XY

F

no glitch

without delays F = XZʹ + YZ



with delays
F = XZʹ + YZ

with consensus term XY not connected
subfunction contained in fig326a.slx

note: here, the simulation time is 0 < t < 8 (sec or any other time unit), and the sampling 

time interval is, by default, Ts = 0.01 time units, so that there are 100 samples per time 

unit, thus, delay by 20 samples would correspond to 20/100  = 0.2 = 1/5 of a time unit.



with delays



0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

t

X,Y

Z

Zʹ

YZ

XZʹ

XY

F

glitch

with delays F = XZʹ + YZ



% fig326m.m – found on Canvas

% import data from Simulink into MATLAB for plotting

t   = S.time;         % time range, length 801 by default

X   = S.data(:,1); 

Z   = S.data(:,2); 

Zp = S.data(:,3); 

YZ  = S.data(:,4); 

XZp = S.data(:,5); 

XY  = S.data(:,6); 

F   = S.data(:,7);    % extract computed output

figure; 

subplot(7,1,1); stairs(t,X,'b-'); yaxis(0,2,0:2);

subplot(7,1,2); stairs(t,Z,'b-'); yaxis(0,2,0:2); 

subplot(7,1,3); stairs(t,Zp,'g-'); yaxis(0,2,0:2); 

subplot(7,1,4); stairs(t,YZ,'m-'); yaxis(0,2,0:2); 

subplot(7,1,5); stairs(t,XZp,'m-'); yaxis(0,2,0:2); 

subplot(7,1,6); stairs(t,XY,'m-'); yaxis(0,2,0:2); 

subplot(7,1,7); stairs(t,F,'r-'); yaxis(0,2,0:2); 

xlabel('\itt');



with consensus term XY connected

F = XZʹ + YZ + XY





0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

t

X,Y

Z

Zʹ

YZ

XZʹ

XY

F

no glitch

with delays and consensus term F = XZʹ + YZ + XY



adjacent pairs of 1’s must be covered by a PI to prevent timing hazards

another example – Wakerly Fig. 3-30

K-map for a sum-of-products circuit

(a) as originally designed

(b) with extra product terms fo cover static-1 hazards



two more examples [cf. Brown & Vranesic]

adjacent pairs of 1’s must be covered by a PI to prevent timing hazards

cd 00 01 11 10

00

01

11

10

ab

1

1

1

1

1

1

1

1

cd 00 01 11 10

00

01

11

10

ab

1

1

1

1

1

1

1

1

F = aʹc + ab 

= aʹc + ab + bc

F = aʹc + ad 

= aʹc + ad + cd

consensus term consensus term



20. Timing hazards – dynamic hazards

dynamic hazard example in which the 

output undergoes a brief oscillation before 

settling to its correct value, caused by the 

delays along different propagation paths.

[References: S. Brown & Z. Vranesic, 

Fundamentals of Digital Logic with 

Verilog Design, 3/e, McGraw-Hill, 2014, 

also ,Wakerly, Sect. 3.4.3.]

x1

b

c

d

F

a
x2 = x3 = x4 = 1

x1

x2

x3

x4

a

b

c
d

F
one gate delay



Simulink Implementation

Simulink file: dhazard1.slx, with delays

Simulink file: dhazard2.slx, without delays



x2 = x3 = x4 = 1

a = (x1 ∙ x2)ʹ = x1ʹ 

b = (x1 ∙ a)ʹ = (x1 ∙ a)ʹ 

c = (x3 ∙ a)ʹ = (1 ∙ a)ʹ = aʹ

d = (x4 ∙ c)ʹ = (1 ∙ c)ʹ = cʹ = a 

F = (b ∙ d)ʹ 

(without delays)



with delays without delays



set(0,'DefaultAxesFontSize',8);

t = S.time;         % extract data from timeseries S

x1 = S.data(:,1); 

a = S.data(:,2); 

b = S.data(:,3); 

c = S.data(:,4); 

d = S.data(:,5); 

F = S.data(:,6); 

figure; 

subplot(6,1,1); stairs(t,x1,'b-'); yaxis(0,1.5,0:1);

subplot(6,1,2); stairs(t,a,'m-'); yaxis(0,1.5,0:1);

subplot(6,1,3); stairs(t,b,'g-'); yaxis(0,1.5,0:1);

subplot(6,1,4); stairs(t,c,'b-'); yaxis(0,1.5,0:1);

subplot(6,1,5); stairs(t,d,'m-'); yaxis(0,1.5,0:1);

subplot(6,1,6); stairs(t,F,'r-'); yaxis(0,1.5,0:1);

xlabel('\itt');



1 2 3 4 5 6 7 8
0

1

1 2 3 4 5 6 7 8
0

1

1 2 3 4 5 6 7 8
0

1

1 2 3 4 5 6 7 8
0

1

1 2 3 4 5 6 7 8
0

1

1 2 3 4 5 6 7 8
0

1

t

x1

b

c

d

F

a

∙ a)ʹ 



ideal timing diagram – truth table

% MATLAB code for generating truth table

[x1,x2,x3,x4] = a2d(0:15,4); % 4-bit binary pattern

a = ~(x1 & x2);

b = ~(x1 & a);

c = ~(x3 & a);

d = ~(x4 & c);

F = ~(b & d);

[x1,x2,x3,x4,a,b,c,d,F]         % print truth table

the operations & and | are vectorized

x1

x2

x3

x4

a

b

c
d

F

without delays:

a = (x1 ∙ x2)ʹ 

b = (x1 ∙ a)ʹ  

c = (x3 ∙ a)ʹ 

d = (x4 ∙ c)ʹ 

F = (b ∙ d)ʹ  



x1  x2  x3  x4  a   b   c   d   F

0   0   0   0   1   1   1   1   0

0   0   0   1   1   1   1   0   1

0   0   1   0   1   1   0   1   0

0   0   1   1   1   1   0   1   0

0   1   0   0   1   1   1   1   0

0   1   0   1   1   1   1   0   1

0   1   1   0   1   1   0   1   0

0   1   1   1   1   1   0   1   0

1   0   0   0   1   0   1   1   1

1   0   0   1   1   0   1   0   1

1   0   1   0   1   0   0   1   1

1   0   1   1   1   0   0   1   1

1   1   0   0   0   1   1   1   0

1   1   0   1   0   1   1   0   1

1   1   1   0   0   1   1   1   0

1   1   1   1   0   1   1   0   1

4-bit binary pattern

ideal timing diagram – truth table



ideal timing diagram – truth table

Simulink file: dhazard3.slx, without delays



x1,  x2,   x3,  x4,  F signals x1, a, b, c, d, F signals



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

t

x1

F

x2

x3

x4

x1,  x2,   x3,  x4,  F signals



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

t

b

c

d

F

a

x1, a, b, c, d, F signals



t = S.time;        % extract data from structure S

a = S.data(:,2); 

b = S.data(:,3); 

c = S.data(:,4); 

d = S.data(:,5); 

F = S.data(:,6);

x1 = X.data(:,1);   % extract data from structure X

x2 = X.data(:,2); 

x3 = X.data(:,3); 

x4 = X.data(:,4); 

figure; 

subplot(5,1,1); stairs(t,x1,'b-'); yaxis(0,1.5,0:1)

subplot(5,1,2); stairs(t,x2,'b-'); yaxis(0,1.5,0:1) 

subplot(5,1,3); stairs(t,x3,'b-'); yaxis(0,1.5,0:1) 

subplot(5,1,4); stairs(t,x4,'b-'); yaxis(0,1.5,0:1)

subplot(5,1,5); stairs(t,F,'r-'); yaxis(0,1.5,0:1)

xlabel('\itt');

figure; 

subplot(5,1,1); stairs(t,a,'b-'); yaxis(0,1.5,0:1)

subplot(5,1,2); stairs(t,b,'g-'); yaxis(0,1.5,0:1) 

subplot(5,1,3); stairs(t,c,'b-'); yaxis(0,1.5,0:1) 

subplot(5,1,4); stairs(t,d,'m-'); yaxis(0,1.5,0:1) 

subplot(5,1,5); stairs(t,F,'r-'); yaxis(0,1.5,0:1) 

xlabel('\itt');



x1  x2  x3  x4  F

0   0   0   0   0

0   0   0   1   1

0   0   1   0   0

0   0   1   1   0

0   1   0   0   0

0   1   0   1   1

0   1   1   0   0

0   1   1   1   0

1   0   0   0   1

1   0   0   1   1

1   0   1   0   1

1   0   1   1   1

1   1   0   0   0

1   1   0   1   1

1   1   1   0   0

1   1   1   1   1

4-bit binary pattern

x1x2
x3x4

1

1

00 01 11 10

00

01

11

10

1 1

1

1

1

1

x3ʹx4

x1x4

F = x1x4 + x1x2ʹ + x3ʹx4

x1

x2

x3

x4

F

x1x2ʹ



F = x1x4 + x1x2ʹ + x3ʹx4

Simulink file: dhazard4.slx, with delays



F = x1x4 + x1x2ʹ + x3ʹx4

does not exhibit any static or 

dynamic hazards, apart from 

an overall delay



0 1 2 3 4 5 6 7 8
0

1

0 1 2 3 4 5 6 7 8
0

1

t

x2 = x3 = x4 = 1

F = x1x4 + x1x2ʹ + x3ʹx4

x1

F

overall two-gate delay, relative to x1



x2 = x3 = x4 = 1

F = x1x4 + x1x2ʹ + x3ʹx4

x1

F


